Determinantal inequalities for the partition function

被引:9
|
作者
Jia, Dennis X. Q. [1 ]
Wang, Larry X. W. [1 ]
机构
[1] Nankai Univ, Ctr Combinatorics, Tianjin 300071, Peoples R China
基金
美国国家科学基金会;
关键词
Partition function; log-concavity; determinant; the Hardy-Ramanujan-Rademacher formula; double Turan inequality; LOG-CONCAVITY;
D O I
10.1017/prm.2018.144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p(n) denote the partition function. In this paper, we will prove that for n222, p(n) p(n + 1) p(n + 2) p(n - 1) p(n) p(n + 1) p(n - 2) p(n - 1) p(n) > 0. As a corollary, we deduce that p(n) satisfies the double Tur ' an inequalities, that is, for n222, (p(n)2 - p(n - 1)p(n + 1))2 - (p(n - 1)2 - p(n - 2)p(n))(p(n + 1)2 - p(n)p(n + 2)) > 0.
引用
收藏
页码:1451 / 1466
页数:16
相关论文
共 50 条
  • [41] ESTABLISHING DETERMINANTAL INEQUALITIES FOR POSITIVE-DEFINITE MATRICES
    CERDEIRA, JO
    FARIA, I
    BARCIA, P
    DISCRETE APPLIED MATHEMATICS, 1995, 63 (01) : 13 - 24
  • [42] REFINEMENTS OF TWO DETERMINANTAL INEQUALITIES FOR POSITIVE SEMIDEFINITE MATRICES
    Hong, Yan
    Qi, Feng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (03):
  • [43] Some determinantal inequalities for accretive-dissipative matrices
    Junjian Yang
    Journal of Inequalities and Applications, 2013
  • [44] Some determinantal inequalities for Hadamard and Fan products of matrices
    Xiaohui Fu
    Yang Liu
    Journal of Inequalities and Applications, 2016
  • [45] Some determinantal inequalities for Hadamard and Fan products of matrices
    Fu, Xiaohui
    Liu, Yang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [46] On defining partition entropy by inequalities
    Luo, Ping
    Zhan, Guoxing
    He, Qing
    Shi, Zhongzhi
    Lue, Kevin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (09) : 3233 - 3239
  • [47] Partition Functions of Determinantal and Pfaffian Coulomb Gases with Radially Symmetric Potentials
    Sung-Soo Byun
    Nam-Gyu Kang
    Seong-Mi Seo
    Communications in Mathematical Physics, 2023, 401 : 1627 - 1663
  • [48] Fischer type determinantal inequalities for accretive-dissipative matrices
    Lin, Minghua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (06) : 2808 - 2812
  • [49] WEAKLY SIGN-SYMMETRIC MATRICES AND SOME DETERMINANTAL INEQUALITIES
    CARLSON, D
    COLLOQUIUM MATHEMATICUM, 1967, 17 (01) : 123 - &
  • [50] Partition Functions of Determinantal and Pfaffian Coulomb Gases with Radially Symmetric Potentials
    Byun, Sung-Soo
    Kang, Nam-Gyu
    Seo, Seong-Mi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (02) : 1627 - 1663