Determinantal inequalities for the partition function

被引:9
|
作者
Jia, Dennis X. Q. [1 ]
Wang, Larry X. W. [1 ]
机构
[1] Nankai Univ, Ctr Combinatorics, Tianjin 300071, Peoples R China
基金
美国国家科学基金会;
关键词
Partition function; log-concavity; determinant; the Hardy-Ramanujan-Rademacher formula; double Turan inequality; LOG-CONCAVITY;
D O I
10.1017/prm.2018.144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p(n) denote the partition function. In this paper, we will prove that for n222, p(n) p(n + 1) p(n + 2) p(n - 1) p(n) p(n + 1) p(n - 2) p(n - 1) p(n) > 0. As a corollary, we deduce that p(n) satisfies the double Tur ' an inequalities, that is, for n222, (p(n)2 - p(n - 1)p(n + 1))2 - (p(n - 1)2 - p(n - 2)p(n))(p(n + 1)2 - p(n)p(n + 2)) > 0.
引用
收藏
页码:1451 / 1466
页数:16
相关论文
共 50 条
  • [21] Higher order Turán inequalities for the distinct partition function
    Dong, Janet J. W.
    Ji, Kathy Q.
    JOURNAL OF NUMBER THEORY, 2024, 260 : 71 - 102
  • [22] Some determinantal inequalities for Hadamard product of matrices
    Chen, SC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 368 : 99 - 106
  • [23] Determinantal Inequalities for Accretive-Dissipative Matrices
    Kh. D. Ikramov
    Journal of Mathematical Sciences, 2004, 121 (4) : 2458 - 2464
  • [24] EXTENSION OF DETERMINANTAL INEQUALITIES OF POSITIVE DEFINITE MATRICES
    Fu, Xiaohui
    Liu, Yang
    Liu, Shunqin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (02): : 355 - 359
  • [25] Analogues of Some Determinantal Inequalities for Sector Matrices
    Liu, J.
    Sheng, X.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 53 - 59
  • [26] Analogues of Some Determinantal Inequalities for Sector Matrices
    J. Liu
    X. Sheng
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 53 - 59
  • [27] Fischer determinantal inequalities and Higham's Conjecture
    Drury, S. W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 3129 - 3133
  • [28] On some open questions concerning determinantal inequalities
    Ghabries, Mohammad M.
    Abbas, Hassane
    Mourad, Bassam
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 596 : 169 - 183
  • [29] REFINEMENTS OF DETERMINANTAL INEQUALITIES OF JENSEN'S TYPE
    Horvath, L.
    Khan, Kh. A.
    Pecaric, J.
    EURASIAN MATHEMATICAL JOURNAL, 2015, 6 (03): : 30 - 44
  • [30] Some New Results on Determinantal Inequalities and Applications
    Hou-Biao Li
    Ting-Zhu Huang
    Hong Li
    Journal of Inequalities and Applications, 2010