Style Attuned Pre-training and Parameter Efficient Fine-tuning for Spoken Language Understanding

被引:1
|
作者
Cao, Jin [1 ]
Wang, Jun [1 ]
Hamza, Wael [1 ]
Vanee, Kelly [1 ]
Li, Shang-Wen [1 ]
机构
[1] Amazon AI, Beijing, Peoples R China
来源
关键词
spoken language understanding (SLU); intent classification; slot labeling; transfer learning; NETWORKS;
D O I
10.21437/Interspeech.2020-2907
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
Neural models have yielded state-of-the-art results in deciphering spoken language understanding (SLU) problems; however, these models require a significant amount of domain-specific labeled examples for training, which is prohibitively expensive. While pre-trained language models like BERT have been shown to capture a massive amount of knowledge by learning from unlabeled corpora and solve SLU using fewer labeled examples for adaption, the encoding of knowledge is implicit and agnostic to downstream tasks. Such encoding results in model inefficiencies in parameter usage: an entirely new model is required for every domain. To address these challenges, we introduce a novel SLU framework, comprising a conversational language modeling (CLM) pre-training task and a light encoder architecture. The CLM pre-training enables networks to capture the representation of the language in conversation style with the presence of ASR errors. The light encoder architecture separates the shared pre-trained networks from the mappings of generally encoded knowledge to specific domains of SLU, allowing for the domain adaptation to be performed solely at the light encoder and thus increasing efficiency. With the framework, we match the performance of state-of-the-art SLU results on Alexa internal datasets and on two public ones (ATIS, SNIPS), adding only 4.4% parameters per task.
引用
收藏
页码:1570 / 1574
页数:5
相关论文
共 50 条
  • [41] Personalized Large Language Models through Parameter Efficient Fine-Tuning Techniques
    Braga, Marco
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 3076 - 3076
  • [42] Parameter-Efficient Fine-Tuning of Pre-trained Large Language Models for Financial Text Analysis
    Langa, Kelly
    Wang, Hairong
    Okuboyejo, Olaperi
    ARTIFICIAL INTELLIGENCE RESEARCH, SACAIR 2024, 2025, 2326 : 3 - 20
  • [43] Neural Architecture Search for Parameter-Efficient Fine-tuning of Large Pre-trained Language Models
    Lawton, Neal
    Kumar, Anoop
    Thattai, Govind
    Galstyan, Aram
    Ver Steeg, Greg
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 8506 - 8515
  • [44] Parameter-efficient fine-tuning of large language models using semantic knowledge tuning
    Prottasha, Nusrat Jahan
    Mahmud, Asif
    Sobuj, Md. Shohanur Islam
    Bhat, Prakash
    Kowsher, Md
    Yousefi, Niloofar
    Garibay, Ozlem Ozmen
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [45] Improving Pre-Training and Fine-Tuning for Few-Shot SAR Automatic Target Recognition
    Zhang, Chao
    Dong, Hongbin
    Deng, Baosong
    REMOTE SENSING, 2023, 15 (06)
  • [46] MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot Learning
    Rafailov, Rafael
    Hatch, Kyle
    Kolev, Victor
    Martin, John D.
    Phielipp, Mariano
    Finn, Chelsea
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [47] CODE: Contrastive Pre-training with Adversarial Fine-Tuning for Zero-Shot Expert Linking
    Chen, Bo
    Zhang, Jing
    Zhang, Xiaokang
    Tang, Xiaobin
    Cai, Lingfan
    Chen, Hong
    Li, Cuiping
    Zhang, Peng
    Tang, Jie
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 11846 - 11854
  • [48] Trajectory-BERT: Pre-training and fine-tuning bidirectional transformers for crowd trajectory enhancement
    Li, Lingyu
    Huang, Tianyu
    Li, Yihao
    Li, Peng
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2023, 34 (3-4)
  • [49] Editorial for Special Issue on Large-scale Pre-training: Data, Models, and Fine-tuning
    Wen, Ji-Rong
    Huang, Zi
    Zhang, Hanwang
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (02) : 145 - 146
  • [50] Knowledge-guided pre-training and fine-tuning: Video representation learning for action recognition
    Wang, Guanhong
    Zhou, Yang
    He, Zhanhao
    Lu, Keyu
    Feng, Yang
    Liu, Zuozhu
    Wang, Gaoang
    NEUROCOMPUTING, 2024, 571