Style Attuned Pre-training and Parameter Efficient Fine-tuning for Spoken Language Understanding

被引:1
|
作者
Cao, Jin [1 ]
Wang, Jun [1 ]
Hamza, Wael [1 ]
Vanee, Kelly [1 ]
Li, Shang-Wen [1 ]
机构
[1] Amazon AI, Beijing, Peoples R China
来源
关键词
spoken language understanding (SLU); intent classification; slot labeling; transfer learning; NETWORKS;
D O I
10.21437/Interspeech.2020-2907
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
Neural models have yielded state-of-the-art results in deciphering spoken language understanding (SLU) problems; however, these models require a significant amount of domain-specific labeled examples for training, which is prohibitively expensive. While pre-trained language models like BERT have been shown to capture a massive amount of knowledge by learning from unlabeled corpora and solve SLU using fewer labeled examples for adaption, the encoding of knowledge is implicit and agnostic to downstream tasks. Such encoding results in model inefficiencies in parameter usage: an entirely new model is required for every domain. To address these challenges, we introduce a novel SLU framework, comprising a conversational language modeling (CLM) pre-training task and a light encoder architecture. The CLM pre-training enables networks to capture the representation of the language in conversation style with the presence of ASR errors. The light encoder architecture separates the shared pre-trained networks from the mappings of generally encoded knowledge to specific domains of SLU, allowing for the domain adaptation to be performed solely at the light encoder and thus increasing efficiency. With the framework, we match the performance of state-of-the-art SLU results on Alexa internal datasets and on two public ones (ATIS, SNIPS), adding only 4.4% parameters per task.
引用
收藏
页码:1570 / 1574
页数:5
相关论文
共 50 条
  • [21] FACTPEGASUS: Factuality-Aware Pre-training and Fine-tuning for Abstractive Summarization
    Wan, David
    Bansal, Mohit
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 1010 - 1028
  • [22] Evaluation of pre-training impact on fine-tuning for remote sensing scene classification
    Yuan, Man
    Liu, Zhi
    Wang, Fan
    REMOTE SENSING LETTERS, 2019, 10 (01) : 49 - 58
  • [23] SPEECH-LANGUAGE PRE-TRAINING FOR END-TO-END SPOKEN LANGUAGE UNDERSTANDING
    Qian, Yao
    Bianv, Ximo
    Shi, Yu
    Kanda, Naoyuki
    Shen, Leo
    Xiao, Zhen
    Zeng, Michael
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7458 - 7462
  • [24] KNOWLEDGE DISTILLATION FROM BERT IN PRE-TRAINING AND FINE-TUNING FOR POLYPHONE DISAMBIGUATION
    Sun, Hao
    Tan, Xu
    Gan, Jun-Wei
    Zhao, Sheng
    Han, Dongxu
    Liu, Hongzhi
    Qin, Tao
    Liu, Tie-Yan
    2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 168 - 175
  • [25] Pre-training Fine-tuning data Enhancement method based on active learning
    Cao, Deqi
    Ding, Zhaoyun
    Wang, Fei
    Ma, Haoyang
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 1447 - 1454
  • [26] Pre-training for Spoken Language Understanding with Joint Textual and Phonetic Representation Learning
    Chen, Qian
    Wang, Wen
    Zhang, Qinglin
    INTERSPEECH 2021, 2021, : 1244 - 1248
  • [27] Speech Model Pre-training for End-to-End Spoken Language Understanding
    Lugosch, Loren
    Ravanelli, Mirco
    Ignoto, Patrick
    Tomar, Vikrant Singh
    Bengio, Yoshua
    INTERSPEECH 2019, 2019, : 814 - 818
  • [28] Fine-tuning Pre-trained Language Models for Few-shot Intent Detection: Supervised Pre-training and Isotropization
    Zhang, Haode
    Liang, Haowen
    Zhang, Yuwei
    Zhan, Liming
    Wu, Xiao-Ming
    Lu, Xiaolei
    Lam, Albert Y. S.
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 532 - 542
  • [29] Democratizing protein language models with parameter-efficient fine-tuning
    Sledzieski, Samuel
    Kshirsagar, Meghana
    Baek, Minkyung
    Dodhia, Rahul
    Ferres, Juan Lavista
    Berger, Bonnie
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (26)
  • [30] Towards Adaptive Prefix Tuning for Parameter-Efficient Language Model Fine-tuning
    Zhang, Zhen-Ru
    Tan, Chuanqi
    Xu, Haiyang
    Wang, Chengyu
    Huang, Jun
    Huang, Songfang
    61ST CONFERENCE OF THE THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 2, 2023, : 1239 - 1248