Millimeter-wave GaNHFET technology

被引:6
|
作者
Higashiwaki, Masataka [1 ]
Mimura, Takashi [2 ]
Matsui, Toshiaki
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Fujitsu Labs Ltd, Atsugi, Kanagawa 2430197, Japan
来源
关键词
GaN; heterostructure field-effect transistor (HFET); millimeter-wave; catalytic chemical vapor deposition (Cat-CVD); current-gain cutoff frequency (f(T)); maximum oscillation frequency (f(max));
D O I
10.1117/12.767574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes device process and characteristics of sub-100-nm-gate AlGaN/GaN heterostructure field-effect transistors (HFETs) for millimeter-wave applications. We developed three techniques to suppress short-channel effects and thereby enhance high-frequency device characteristics: high-Al-composition and thin AlGaN barrier layers, SiN passivation by catalytic chemical vapor deposition, and sub-100-nm Ti-based gates. The Al0.4Ga0.6N(6 nm)/GaN HFETs with a gate length of 60 nm on a 4H-SiC substrate showed a maximum drain current density of 1.6 A/mm and a maximum transconductance of 424 mS/mm. The use of the techniques led to record current-gain cutoff frequency (f(T)) and maximum oscillation frequency (f(max)) of 190 and 241 GHz, respectively. The f(T) and f(max) kept high values over the wide range of drain voltage and current. These results indicate significantly high potential of GaN HFETs for high-power applications in the millimeter-wave frequency range.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Gap Waveguide Technology for Millimeter-Wave Antenna Systems
    Rajo-Iglesias, Eva
    Ferrando-Rocher, Miguel
    Zaman, Ashraf Uz
    IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (07) : 14 - 20
  • [42] MILLIMETER-WAVE MINIATURIZED COUPLERS INTEGRATED ON BICMOS TECHNOLOGY
    Titz, Diane
    Ferrero, Fabien
    Pilard, Romain
    Jan, Sebastien
    Gianesello, Frederic
    Luxey, Cyril
    Gloria, Daniel
    Jacquemod, Gilles
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2014, 56 (03) : 587 - 590
  • [43] Special Section on Microwave and Millimeter-Wave Technology FOREWORD
    Kuki, Takao
    IEICE TRANSACTIONS ON ELECTRONICS, 2017, E100C (10): : 789 - 789
  • [44] SiGe HBT BiCMOS technology for millimeter-wave applications
    Joseph, A
    Dahlstrom, M
    Liu, QH
    Orner, B
    Liu, XF
    Sheridan, D
    Rassell, R
    Dunn, J
    Ahlgren, D
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3 NO 3, 2006, 3 (03): : 448 - +
  • [45] INP TECHNOLOGY DRIVES MILLIMETER-WAVE HEMT AMPLIFIERS
    DERAEDT, W
    MICROWAVES & RF, 1995, 34 (14) : 65 - &
  • [46] InP technology drives millimeter-wave HEMT amplifiers
    De Raedt, Walter
    Microwaves and RF, 1995, 34 (14):
  • [47] Advanced millimeter-wave MMIC technology and circuit development
    Wang, H
    WIRELESS TECHNOLOGIES AND SYSTEMS: MILLIMETER-WAVE AND OPTICAL, 1998, 3232 : 2 - 8
  • [48] New Technology and Applications on Passive Millimeter-Wave Sensors
    Jin Li
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 472-475 : 1040 - 1044
  • [49] A new hybrid technology for millimeter-wave integrated circuits
    Chenakin, AV
    Martynyuk, AE
    Skachko, VI
    1997 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS I-III: HIGH FREQUENCIES IN HIGH PLACES, 1997, : 921 - 924
  • [50] Six-Port Technology for Millimeter-Wave Metrology
    Haddadi, Kamel
    Loyez, Christophe
    Ziouche, Katir
    2019 IEEE INTERNATIONAL CONFERENCE ON ANTENNA MEASUREMENTS & APPLICATIONS (CAMA), 2019, : 81 - 84