Millimeter-wave GaNHFET technology

被引:6
|
作者
Higashiwaki, Masataka [1 ]
Mimura, Takashi [2 ]
Matsui, Toshiaki
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Fujitsu Labs Ltd, Atsugi, Kanagawa 2430197, Japan
来源
关键词
GaN; heterostructure field-effect transistor (HFET); millimeter-wave; catalytic chemical vapor deposition (Cat-CVD); current-gain cutoff frequency (f(T)); maximum oscillation frequency (f(max));
D O I
10.1117/12.767574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes device process and characteristics of sub-100-nm-gate AlGaN/GaN heterostructure field-effect transistors (HFETs) for millimeter-wave applications. We developed three techniques to suppress short-channel effects and thereby enhance high-frequency device characteristics: high-Al-composition and thin AlGaN barrier layers, SiN passivation by catalytic chemical vapor deposition, and sub-100-nm Ti-based gates. The Al0.4Ga0.6N(6 nm)/GaN HFETs with a gate length of 60 nm on a 4H-SiC substrate showed a maximum drain current density of 1.6 A/mm and a maximum transconductance of 424 mS/mm. The use of the techniques led to record current-gain cutoff frequency (f(T)) and maximum oscillation frequency (f(max)) of 190 and 241 GHz, respectively. The f(T) and f(max) kept high values over the wide range of drain voltage and current. These results indicate significantly high potential of GaN HFETs for high-power applications in the millimeter-wave frequency range.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] LATEST TRENDS IN MILLIMETER-WAVE IMAGING TECHNOLOGY
    Oka, S.
    Togo, H.
    Kukutsu, N.
    Nagatsuma, T.
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2008, 1 : 197 - 204
  • [22] SiGe technology requirements for millimeter-wave applications
    Wennekers, P
    Reuter, R
    PROCEEDING OF THE 2004 BIPOLAR/BICMOS CIRCUITS AND TECHNOLOGY MEETING, 2004, : 79 - 83
  • [23] NEW TRENDS IN MILLIMETER-WAVE MIXER TECHNOLOGY
    PAUL, J
    KUNG, J
    MICROWAVE JOURNAL, 1980, 23 (05) : 55 - &
  • [24] Millimeter-Wave Imaging using Silicon Technology
    Sodini, Charles G.
    Khoa Nguyen
    2011 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2011, : 5 - 25
  • [25] MILLIMETER-WAVE TECHNOLOGY FOR SPACE POWER BEAMING
    KOERT, P
    CHA, JT
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1992, 40 (06) : 1251 - 1258
  • [26] Tumor Detection Using Millimeter-Wave Technology
    Mirbeik-Sabzevari, Amir
    Tavassolian, Negar
    IEEE MICROWAVE MAGAZINE, 2019, 20 (08) : 30 - 43
  • [27] Millimeter-wave automotive radars and related technology
    Raffaelli, L
    1996 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 1996, : 35 - 38
  • [28] Special Section on Microwave and Millimeter-Wave Technology FOREWORD
    Shinohara, Naoki
    IEICE TRANSACTIONS ON ELECTRONICS, 2018, E101C (10): : 718 - 718
  • [29] TSV Technology for Millimeter-Wave and Terahertz Design and Applications
    Hu, Sanming
    Wang, Lei
    Xiong, Yong-Zhong
    Lim, Teck Guan
    Zhang, Bo
    Shi, Jinglin
    Yuan, Xiaojun
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2011, 1 (02): : 260 - 267
  • [30] MILLIMETER-WAVE INP HEMT TECHNOLOGY - PERFORMANCE AND APPLICATIONS
    NGUYEN, LD
    LE, MV
    LIU, T
    LUI, M
    KANEKO, K
    HOLZMAN, E
    DELANEY, MJ
    SOLID-STATE ELECTRONICS, 1995, 38 (09) : 1575 - 1579