Millimeter-wave GaNHFET technology

被引:6
|
作者
Higashiwaki, Masataka [1 ]
Mimura, Takashi [2 ]
Matsui, Toshiaki
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Fujitsu Labs Ltd, Atsugi, Kanagawa 2430197, Japan
来源
关键词
GaN; heterostructure field-effect transistor (HFET); millimeter-wave; catalytic chemical vapor deposition (Cat-CVD); current-gain cutoff frequency (f(T)); maximum oscillation frequency (f(max));
D O I
10.1117/12.767574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes device process and characteristics of sub-100-nm-gate AlGaN/GaN heterostructure field-effect transistors (HFETs) for millimeter-wave applications. We developed three techniques to suppress short-channel effects and thereby enhance high-frequency device characteristics: high-Al-composition and thin AlGaN barrier layers, SiN passivation by catalytic chemical vapor deposition, and sub-100-nm Ti-based gates. The Al0.4Ga0.6N(6 nm)/GaN HFETs with a gate length of 60 nm on a 4H-SiC substrate showed a maximum drain current density of 1.6 A/mm and a maximum transconductance of 424 mS/mm. The use of the techniques led to record current-gain cutoff frequency (f(T)) and maximum oscillation frequency (f(max)) of 190 and 241 GHz, respectively. The f(T) and f(max) kept high values over the wide range of drain voltage and current. These results indicate significantly high potential of GaN HFETs for high-power applications in the millimeter-wave frequency range.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Development of millimeter-wave GaNHFET technology
    Higashiwaki, M.
    Mimura, T.
    Matsui, T.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2007, 204 (06): : 2042 - 2048
  • [2] MILLIMETER-WAVE TECHNOLOGY
    WILTSE, JC
    MICROWAVES & RF, 1988, 27 (05) : 92 - 92
  • [3] Application of millimeter-wave photonics technology in passive millimeter-wave imaging
    Zhang, Yuedong
    Jiang, Yuesong
    Guo, Jingping
    He, Yuntao
    Wang, Haiyang
    INFRARED, MILLIMETER WAVE, AND TERAHERTZ TECHNOLOGIES, 2010, 7854
  • [4] MILLIMETER-WAVE RADAR TECHNOLOGY
    HEIDEN, DZ
    ELECTRICAL COMMUNICATION, 1982, 57 (01): : 70 - 78
  • [5] Micromachined millimeter-wave technology
    SaintEtienne, E
    Guillon, B
    Pons, P
    Blasquez, G
    Parra, T
    Blondy, P
    Lalaurie, JC
    Plana, R
    Graffeuil, J
    1997 21ST INTERNATIONAL CONFERENCE ON MICROELECTRONICS - PROCEEDINGS, VOLS 1 AND 2, 1997, : 519 - 522
  • [6] MILLIMETER-WAVE SENSOR TECHNOLOGY
    PAUL, JA
    MICROWAVE JOURNAL, 1984, 27 (08) : 72 - 73
  • [7] MILLIMETER-WAVE DEVICE TECHNOLOGY
    ROSEN, A
    CAULTON, M
    STABILE, P
    GOMBAR, AM
    JANTON, WM
    WU, CP
    CORBOY, JF
    MAGEE, CW
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1982, 30 (01) : 47 - 54
  • [8] MILLIMETER-WAVE HEMT TECHNOLOGY
    SWANSON, AW
    SMITH, PM
    CHAO, PC
    DUH, KH
    BALLINGALL, JM
    1989 IEEE MILITARY COMMUNICATIONS CONFERENCE, VOLS 1-3: BRIDGING THE GAP : INTEROPERABILITY, SURVIVABILITY, SECURITY, 1989, : 744 - 748
  • [9] MILLIMETER-WAVE APPLICATIONS AND TECHNOLOGY TRENDS
    MEINEL, HH
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 1992, 47 (11-12): : 456 - 468
  • [10] Millimeter-wave Impulse Radio Technology
    Hayashi, Hiroki
    Nakasha, Yasuhiro
    Aota, Masahiro
    Sato, Naoji
    FUJITSU SCIENTIFIC & TECHNICAL JOURNAL, 2013, 49 (03): : 350 - 355