Learning image representations tied to ego-motion

被引:109
|
作者
Jayaraman, Dinesh [1 ]
Grauman, Kristen [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
关键词
D O I
10.1109/ICCV.2015.166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding how images of objects and scenes behave in response to specific ego-motions is a crucial aspect of proper visual development, yet existing visual learning methods are conspicuously disconnected from the physical source of their images. We propose to exploit proprioceptive motor signals to provide unsupervised regularization in convolutional neural networks to learn visual representations from egocentric video. Specifically, we enforce that our learned features exhibit equivariance i.e. they respond predictably to transformations associated with distinct ego-motions. With three datasets, we show that our unsupervised feature learning approach significantly outperforms previous approaches on visual recognition and next-best-view prediction tasks. In the most challenging test, we show that features learned from video captured on an autonomous driving platform improve large-scale scene recognition in static images from a disjoint domain.
引用
收藏
页码:1413 / 1421
页数:9
相关论文
共 50 条
  • [31] Joint ego-motion and road geometry estimation
    Lundquist, Christian
    Schon, Thomas B.
    INFORMATION FUSION, 2011, 12 (04) : 253 - 263
  • [32] DUEL: Depth visUal Ego-motion Learning for autonomous robot obstacle avoidance
    Wang, Naiyao
    Zhang, Bo
    Chi, Haixu
    Wang, Hua
    Mcloone, Sean
    Liu, Hongbo
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2024, 43 (03): : 305 - 329
  • [33] Practical ego-motion estimation for mobile robots
    Schärer, S
    Baltes, J
    Anderson, J
    2004 IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS, VOLS 1 AND 2, 2004, : 921 - 926
  • [34] Correspondenceless ego-motion estimation using an IMU
    Makadia, A
    Daniilidis, K
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 3534 - 3539
  • [35] Ego-motion computing for vehicle velocity estimation
    Sotelo, M. A.
    Flores, R.
    Garcia, R.
    Ocana, M.
    Garcia, M. A.
    Parral, I.
    Fernandez, D.
    Gavilan, M.
    Naranjo, J. E.
    COMPUTER AIDED SYSTEMS THEORY- EUROCAST 2007, 2007, 4739 : 1119 - +
  • [36] A new Method on Camera Ego-motion Estimation
    Yuan, Ding
    Yu, Yalong
    2013 6TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), VOLS 1-3, 2013, : 651 - 656
  • [37] DecoupledPoseNet: Cascade Decoupled Pose Learning for Unsupervised Camera Ego-Motion Estimation
    Zhou, Wenhui
    Zhang, Hua
    Yan, Zhengmao
    Wang, Weisheng
    Lin, Lili
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1636 - 1648
  • [38] Improving Unsupervised Learning of Monocular Depth and Ego-Motion via Stereo Network
    He, Mu
    Xie, Jin
    Yang, Jian
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 421 - 433
  • [39] Rover navigation using stereo ego-motion
    Olson, CF
    Matthies, LH
    Schoppers, M
    Maimone, MW
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2003, 43 (04) : 215 - 229
  • [40] A robust method for computing vehicle ego-motion
    Stein, GP
    Mano, O
    Shashua, A
    PROCEEDINGS OF THE IEEE INTELLIGENT VEHICLES SYMPOSIUM 2000, 2000, : 362 - 368