Joint ego-motion and road geometry estimation

被引:18
|
作者
Lundquist, Christian [1 ]
Schon, Thomas B. [1 ]
机构
[1] Linkoping Univ, Div Automat Control, Dept Elect Engn, SE-58183 Linkoping, Sweden
关键词
Sensor fusion; Single track model; Bicycle model; Extended Kalman filter; Road geometry estimation; TRACKING; RADAR; LANE;
D O I
10.1016/j.inffus.2010.06.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We provide a sensor fusion framework for solving the problem of joint ego-motion and road geometry estimation. More specifically we employ a sensor fusion framework to make systematic use of the measurements from a forward looking radar and camera, steering wheel angle sensor, wheel speed sensors and inertial sensors to compute good estimates of the road geometry and the motion of the ego vehicle on this road. In order to solve this problem we derive dynamical models for the ego vehicle, the road and the leading vehicles. The main difference to existing approaches is that we make use of a new dynamic model for the road. An extended Kalman filter is used to fuse data and to filter measurements from the camera in order to improve the road geometry estimate. The proposed solution has been tested and compared to existing algorithms for this problem, using measurements from authentic traffic environments on public roads in Sweden. The results clearly indicate that the proposed method provides better estimates. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 263
页数:11
相关论文
共 50 条
  • [1] Ego-Motion and Indirect Road Geometry Estimation Using Night Vision
    Schon, Thomas B.
    Roll, Jacob
    2009 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1 AND 2, 2009, : 30 - 35
  • [2] Simultaneous Estimation of Road Region and Ego-Motion with Multiple Road Models
    Matsushita, Yoshiteru
    Miura, Jun
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 262 - +
  • [3] Feature Tracking Using Epipolar Geometry for Ego-Motion Estimation
    Huang, Ting-Hsiang
    Zhuang, Zhen-Qi
    Chen, Chia-Yen
    Chang, Bao Rong
    Kuo, Chia-Chen
    2015 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2015,
  • [4] A real-time system for epipolar geometry and ego-motion estimation
    Björkman, M
    Eklundh, JO
    IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, VOL II, 2000, : 506 - 513
  • [5] A Robust Multistage Ego-Motion Estimation
    Wang, Z. L.
    Cai, B. G.
    Du, X. L.
    Ou, S.
    Zhao, J.
    2012 5TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2012, : 138 - 142
  • [6] ToF Camera Ego-Motion Estimation
    Ratshidaho, Terence
    Tapamo, Jules Raymond
    Claassens, Jonathan
    Govender, Natasha
    2012 5TH ROBOTICS AND MECHATRONICS CONFERENCE OF SOUTH AFRICA (ROBOMECH), 2012,
  • [7] Ego-motion estimation by matching dewarped road regions using stereo images
    Seki, Akihito
    Okutomi, Masatoshi
    2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 901 - 907
  • [8] Joint Velocity Ambiguity Resolution and Ego-Motion Estimation Method for mmWave Radar
    Zeng, Zhiyuan
    Liang, Xingdong
    Dang, Xiangwei
    Li, Yanlei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08) : 4753 - 4760
  • [9] Vehicle ego-motion estimation with geometric algebra
    van der Mark, W
    Fontijne, D
    Dorst, L
    Groen, FCA
    IV'2002: IEEE INTELLIGENT VEHICLE SYMPOSIUM, PROCEEDINGS, 2002, : 58 - 63
  • [10] Robust estimation of camera ego-motion parameters
    Wang, Jian-Ming
    Yan, Zhi-Jie
    Duan, Xiao-Jie
    Dou, Ru-Zhen
    Leng, Yu
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2010, 39 (06): : 1168 - 1172