Reliable and Secure Multishot Network Coding using Linearized Reed-Solomon Codes

被引:0
|
作者
Martinez-Penas, Umberto [1 ,2 ]
Kschischang, Frank R. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[2] Aalborg Univ, Dept Math Sci, Aalborg, Denmark
关键词
Linearized Reed-Solomon codes; multishot network coding; network error-correction; sum-rank metric; sum-subspace codes; wire-tap channel; ERROR-CORRECTION; CONVOLUTIONAL-CODES; SKEW;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multishot network coding is considered in a worstcase adversarial setting in which an omniscient adversary with unbounded computational resources may inject erroneous packets in up to t links, erase up to. packets, and wire-tap up to mu links, all throughout l shots of a (random) linearly-coded network. Assuming no knowledge of the underlying linear network code (in particular, the network topology and underlying linear code may change with time), a coding scheme achieving zero-error communication and perfect secrecy is obtained based on linearized Reed-Solomon codes. The scheme achieves the maximum possible secret message size of ln' - 2t - rho - mu packets, where n' is the number of outgoing links at the source, for any packet length m >= n' (largest possible range), with only the restriction that l < q (size of the base field). By lifting this construction, coding schemes for non-coherent communication are obtained with information rates close to optimal for practical instances. AWelch-Berlekamp sum-rank decoding algorithm for linearized Reed-Solomon codes is provided, having quadratic complexity in the total length n = ln', and which can be adapted to handle not only errors, but also erasures, wire-tap observations and non-coherent communication.
引用
收藏
页码:702 / 709
页数:8
相关论文
共 50 条
  • [31] On the concatenation of turbo codes and Reed-Solomon codes
    Zhou, GC
    Lin, TS
    Wang, WZ
    Lindsey, WC
    Lai, D
    Chen, E
    Santoru, J
    2003 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5: NEW FRONTIERS IN TELECOMMUNICATIONS, 2003, : 2134 - 2138
  • [32] Duals of linearized Reed–Solomon codes
    Xavier Caruso
    Amaury Durand
    Designs, Codes and Cryptography, 2023, 91 : 241 - 271
  • [33] Analysis of HARQ schemes using Reed-Solomon codes
    Kotuliakova, K.
    Polec, J.
    PROCEEDINGS OF IWSSIP 2008: 15TH INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, 2008, : 323 - 326
  • [34] Performance Enhancement of the Controller Area Network Protocol Using Reed-Solomon Codes
    Shabour, Haitham Mohmed
    Daffalla, Moutaman Mirghani
    Sharif, Omer Abdel Razag
    2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONICS ENGINEERING (ICCEEE), 2013, : 512 - 517
  • [35] MATRIX FORMALISM OF THE REED-SOLOMON CODES
    Marov, A., V
    Uteshev, A. Yu
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2016, 12 (04): : 4 - 17
  • [36] Proximity Gaps for Reed-Solomon Codes
    Ben-Sasson, Eli
    Carmon, Dan
    Ishai, Yuval
    Kopparty, Swastik
    Saraf, Shubhangi
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 900 - 909
  • [37] On error distance of Reed-Solomon codes
    YuJuan Li
    DaQing Wan
    Science in China Series A: Mathematics, 2008, 51 : 1982 - 1988
  • [38] Distance Distribution in Reed-Solomon Codes
    Li, Jiyou
    Wan, Daqing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (05) : 2743 - 2750
  • [39] ALGORITHMS AND ARCHITECTURES FOR REED-SOLOMON CODES
    ARAMBEPOLA, B
    CHOOMCHUAY, S
    GEC JOURNAL OF RESEARCH, 1992, 9 (03): : 172 - 184
  • [40] On the IPP Properties of Reed-Solomon Codes
    Fernandez, Marcel
    Cotrina, Josep
    Soriano, Miguel
    Domingo, Neus
    EMERGING CHALLENGES FOR SECURITY, PRIVACY AND TRUST: 24TH IFIP TC 11 INTERNATIONAL INFORMATION SECURITY CONFERENCE, SEC 2009, PROCEEDINGS, 2009, 297 : 87 - 97