Reliable and Secure Multishot Network Coding using Linearized Reed-Solomon Codes

被引:0
|
作者
Martinez-Penas, Umberto [1 ,2 ]
Kschischang, Frank R. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[2] Aalborg Univ, Dept Math Sci, Aalborg, Denmark
关键词
Linearized Reed-Solomon codes; multishot network coding; network error-correction; sum-rank metric; sum-subspace codes; wire-tap channel; ERROR-CORRECTION; CONVOLUTIONAL-CODES; SKEW;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multishot network coding is considered in a worstcase adversarial setting in which an omniscient adversary with unbounded computational resources may inject erroneous packets in up to t links, erase up to. packets, and wire-tap up to mu links, all throughout l shots of a (random) linearly-coded network. Assuming no knowledge of the underlying linear network code (in particular, the network topology and underlying linear code may change with time), a coding scheme achieving zero-error communication and perfect secrecy is obtained based on linearized Reed-Solomon codes. The scheme achieves the maximum possible secret message size of ln' - 2t - rho - mu packets, where n' is the number of outgoing links at the source, for any packet length m >= n' (largest possible range), with only the restriction that l < q (size of the base field). By lifting this construction, coding schemes for non-coherent communication are obtained with information rates close to optimal for practical instances. AWelch-Berlekamp sum-rank decoding algorithm for linearized Reed-Solomon codes is provided, having quadratic complexity in the total length n = ln', and which can be adapted to handle not only errors, but also erasures, wire-tap observations and non-coherent communication.
引用
收藏
页码:702 / 709
页数:8
相关论文
共 50 条
  • [21] Balanced Reed-Solomon Codes
    Halbawi, Wael
    Liu, Zihan
    Hassibi, Babak
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 935 - 939
  • [22] Reed-Solomon convolutional codes
    Gluesing-Luerssen, H
    Schmale, W
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 676 - 679
  • [23] A Concatenated Coding Scheme Based on Folded Reed-Solomon Codes
    Trifonov, Peter
    Lee, Moon Ho
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 1013 - 1016
  • [24] Repairing Reed-Solomon Codes
    Guruswami, Venkatesan
    Wootters, Mary
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5684 - 5698
  • [25] DECODING OF REED-SOLOMON CODES
    MANDELBAUM, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (06) : 707 - +
  • [26] Twisted Reed-Solomon Codes
    Beelen, Peter
    Puchinger, Sven
    Rosenkilde, Johan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3047 - 3061
  • [27] Quantum Reed-Solomon codes
    Grassl, M
    Geiselmann, W
    Beth, T
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 231 - 244
  • [28] Twisted Reed-Solomon Codes
    Beelen, Peter
    Puchinger, Sven
    Nielsen, Johan Rosenkilde Ne
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 336 - 340
  • [29] Reliable transmission with low complexity Reed-Solomon Block Turbo Codes
    Zhou, R
    Picart, A
    Pyndiah, R
    Goalic, A
    1ST INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS 2004, PROCEEDINGS, 2004, : 193 - 197
  • [30] Graph codes with Reed-Solomon component codes
    Hoholdt, Tom
    Justesen, Jorn
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2022 - +