Positive block matrices and numerical ranges

被引:16
|
作者
Bourin, Jean-Christophe [1 ]
Mhanna, Antoine [1 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS UMR 6623, 16 Route Gray, F-25030 Besancon, France
关键词
NORM INEQUALITIES; OPERATORS;
D O I
10.1016/j.crma.2017.10.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any positive matrix Mpartitioned in four n-by-n blocks satisfies the unitarily invariant norm inequality parallel to M parallel to <= parallel to M1,1 + M2,2 + omega I parallel to, where omega is the width of the numerical range of M1,2. Some related inequalities and a reverse Lidskii majorization are given. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:1077 / 1081
页数:5
相关论文
共 50 条
  • [41] New pairs of matrices with convex generalized numerical ranges
    Cheung, Wai-Shun
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (10): : 1962 - 1970
  • [42] CONCAVE FUNCTIONS OF PARTITIONED MATRICES WITH NUMERICAL RANGES IN A SECTOR
    Hou, Lei
    Zhang, Dengpeng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (02): : 583 - 589
  • [43] The Elliptic Numerical Ranges of 4 x 4 Matrices
    Liu, Xueting
    Li, Hongkui
    2009 IITA INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS ENGINEERING, PROCEEDINGS, 2009, : 566 - +
  • [44] Equality of higher-rank numerical ranges of matrices
    Chang, Chi-Tung
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (05): : 626 - 638
  • [45] A norm inequality for positive block matrices
    Lin, Minghua
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (07) : 818 - 822
  • [46] Concave functions and positive block matrices
    Lee, Eun-Young
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 712 : 49 - 58
  • [47] Elliptic numerical ranges of 4 X 4 matrices
    Gau, HL
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (01): : 117 - 128
  • [48] Approximation of the Block Numerical Range of Block Operator Matrices
    Yu, Jiahui
    Chen, Alatancang
    Huang, Junjie
    Wu, Jiaojiao
    FILOMAT, 2019, 33 (12) : 3877 - 3881
  • [49] On the Block Numerical Range of Nonnegative Matrices
    Foerster, K.-H.
    Hartanto, N.
    SPECTRAL THEORY IN INNER PRODUCT SPACES AND APPLICATIONS, 2009, 188 : 113 - 133
  • [50] The numerical radius and positivity of block matrices
    Bhatia, Rajendra
    Jain, Tanvi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 656 : 463 - 482