Positive block matrices and numerical ranges

被引:16
|
作者
Bourin, Jean-Christophe [1 ]
Mhanna, Antoine [1 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS UMR 6623, 16 Route Gray, F-25030 Besancon, France
关键词
NORM INEQUALITIES; OPERATORS;
D O I
10.1016/j.crma.2017.10.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any positive matrix Mpartitioned in four n-by-n blocks satisfies the unitarily invariant norm inequality parallel to M parallel to <= parallel to M1,1 + M2,2 + omega I parallel to, where omega is the width of the numerical range of M1,2. Some related inequalities and a reverse Lidskii majorization are given. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:1077 / 1081
页数:5
相关论文
共 50 条
  • [31] Quaternionic Numerical Ranges of Normal Quaternion Matrices
    Feng Lianggui
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 100 - 106
  • [32] NUMERICAL RADIUS OF POSITIVE MATRICES
    GOLDBERG, M
    TADMOR, E
    ZWAS, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (03) : 209 - 214
  • [33] Companion matrices: reducibility, numerical ranges and similarity to contractions
    Gau, HL
    Pei, YW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 383 : 127 - 142
  • [34] Determinantal and eigenvalue inequalities for matrices with numerical ranges in a sector
    Li, Chi-Kwong
    Sze, Nung-Sing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (01) : 487 - 491
  • [35] On the Elliptic Numerical Ranges of 4 x 4 Matrices
    Dong, Chuandai
    Fang, Hualing
    Liu, Xueting
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 4, 2009, : 413 - 416
  • [36] Numerical ranges of weighted shift matrices with periodic weights
    Tsai, Ming Cheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (09) : 2296 - 2302
  • [37] The Normalized Numerical Ranges of 2 x 2 Matrices
    Gevorgyan, L. Z.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2011, 46 (05): : 243 - 251
  • [38] Proof of a conjecture on numerical ranges of weighted cyclic matrices
    Gau, Hwa-Long
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 682 : 295 - 308
  • [39] Numerical ranges of companion matrices: flat portions on the boundary
    Eldred, Jeffrey
    Rodman, Leiba
    Spitkovsky, Ilya
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (11-12): : 1295 - 1311
  • [40] SINGULAR VALUE INEQUALITIES FOR MATRICES WITH NUMERICAL RANGES IN A SECTOR
    Drury, Stephen
    Lin, Minghua
    OPERATORS AND MATRICES, 2014, 8 (04): : 1143 - 1148