Positive block matrices and numerical ranges

被引:16
|
作者
Bourin, Jean-Christophe [1 ]
Mhanna, Antoine [1 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS UMR 6623, 16 Route Gray, F-25030 Besancon, France
关键词
NORM INEQUALITIES; OPERATORS;
D O I
10.1016/j.crma.2017.10.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any positive matrix Mpartitioned in four n-by-n blocks satisfies the unitarily invariant norm inequality parallel to M parallel to <= parallel to M1,1 + M2,2 + omega I parallel to, where omega is the width of the numerical range of M1,2. Some related inequalities and a reverse Lidskii majorization are given. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:1077 / 1081
页数:5
相关论文
共 50 条
  • [1] NUMERICAL RANGE AND POSITIVE BLOCK MATRICES
    Bourin, Jean-Christophe
    Lee, Eun-Young
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (01) : 69 - 77
  • [2] On matrices with elliptical numerical ranges
    Brown, ES
    Spitkovsky, IM
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4): : 177 - 193
  • [3] Numerical ranges of KMS matrices
    Hwa-Long Gau
    Pei Yuan Wu
    Acta Scientiarum Mathematicarum, 2013, 79 (3-4): : 583 - 610
  • [4] Numerical ranges of KMS matrices
    Gau, Hwa-Long
    Wu, Pei Yuan
    ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (3-4): : 583 - 610
  • [5] Numerical ranges of companion matrices
    Gau, Hwa-Long
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (2-3) : 202 - 218
  • [6] Numerical ranges of Hankel matrices
    Gau, Hwa-Long
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 650 : 60 - 74
  • [7] Eigenvalue inequalities for positive block matrices with the inradius of the numerical range
    Bourin, Jean-Christophe
    Lee, Eun-Young
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (01)
  • [9] Numerical ranges of row stochastic matrices
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 506 : 478 - 505
  • [10] On the numerical ranges of matrices in max algebra
    Thaghizadeh, D.
    Zahraei, M.
    Peperko, A.
    Aboutalebi, N. Haj
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (04) : 1773 - 1792