Maximum-likelihood decoding of Reed-Solomon codes is NP-hard

被引:41
|
作者
Guruswami, V [1 ]
Vardy, A
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Comp Sci, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
linear codes; maximum-likelihood decoding; NP-hard problems; Reed-Solomon codes;
D O I
10.1109/TIT.2005.850102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Maximum-likelihood decoding is one of the central algorithmic problems in coding theory. It has been known for over 25 years that maximum-likelihood decoding of general linear codes is NP-hard. Nevertheless, it was so far unknown whether maximum-likelihood decoding remains hard for any specific family of codes with nontrivial algebraic structure. In this paper, we prove that maximum-likelihood decoding is NP-hard for the family of Reed-Solomon codes. We moreover show that maximum-likelihood decoding of Reed-Solomon codes remains hard even with unlimited preprocessing, thereby strengthening a result of Bruck and Naor.
引用
收藏
页码:2249 / 2256
页数:8
相关论文
共 50 条
  • [32] Multitrial decoding of concatenated Reed-Solomon codes
    Schmidt, G
    Huppert, C
    Bossert, M
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 2241 - 2245
  • [33] Interpolation in list decoding of Reed-Solomon codes
    Trifonov, P. V.
    PROBLEMS OF INFORMATION TRANSMISSION, 2007, 43 (03) : 190 - 198
  • [34] Iterative list decoding approach for Reed-Solomon codes
    Zhang Zhijun
    Niu Kai
    Dong Chao
    The Journal of China Universities of Posts and Telecommunications, 2019, 26 (03) : 8 - 14
  • [35] Successive Cancellation Permutation Decoding of Reed-Solomon Codes
    Trifonov, Peter
    2014 IEEE INFORMATION THEORY WORKSHOP (ITW), 2014, : 386 - 390
  • [36] A Decoding Approach to Reed-Solomon Codes from Their Definition
    Bras-Amoros, Maria
    AMERICAN MATHEMATICAL MONTHLY, 2018, 125 (04): : 320 - 338
  • [37] Fast Chase Algorithms for Decoding Reed-Solomon Codes
    Chu, Shao-I
    Chen, Yan-Haw
    Chiu, Yi-Chan
    Chang, Ru-Sian
    2014 INTERNATIONAL SYMPOSIUM ON NEXT-GENERATION ELECTRONICS (ISNE), 2014,
  • [38] FAST TRANSFORM DECODING OF NONSYSTEMATIC REED-SOLOMON CODES
    SHIOZAKI, A
    TRUONG, TK
    CHEUNG, KM
    REED, IS
    IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1990, 137 (02): : 139 - 143
  • [39] Decoding Reed-Solomon Skew-Differential Codes
    Gomez-Torrecillas, Jose
    Navarro, Gabriel
    Patricio Sanchez-Hernandez, Jose
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (12) : 7891 - 7903
  • [40] Modified Euclidean Algorithms for Decoding Reed-Solomon Codes
    Sarwate, Dilip V.
    Yan, Zhiyuan
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1398 - +