Maximum-likelihood decoding of Reed-Solomon codes is NP-hard

被引:41
|
作者
Guruswami, V [1 ]
Vardy, A
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Comp Sci, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
linear codes; maximum-likelihood decoding; NP-hard problems; Reed-Solomon codes;
D O I
10.1109/TIT.2005.850102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Maximum-likelihood decoding is one of the central algorithmic problems in coding theory. It has been known for over 25 years that maximum-likelihood decoding of general linear codes is NP-hard. Nevertheless, it was so far unknown whether maximum-likelihood decoding remains hard for any specific family of codes with nontrivial algebraic structure. In this paper, we prove that maximum-likelihood decoding is NP-hard for the family of Reed-Solomon codes. We moreover show that maximum-likelihood decoding of Reed-Solomon codes remains hard even with unlimited preprocessing, thereby strengthening a result of Bruck and Naor.
引用
收藏
页码:2249 / 2256
页数:8
相关论文
共 50 条
  • [21] Successive Cancellation Decoding of Reed-Solomon Codes
    Trifonov, P. V.
    PROBLEMS OF INFORMATION TRANSMISSION, 2014, 50 (04) : 303 - 312
  • [22] Decoding Method of Reed-Solomon Erasure Codes
    Tang D.
    Cai H.
    Geng W.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (03): : 582 - 596
  • [23] Decoding of rational functioned reed-solomon codes
    Hu, Ta-Hsiang, 1600, Chung Cheng Institute of Technology (43):
  • [24] Unique Decoding of Certain Reed-Solomon Codes
    Shen, Lin-Zhi
    Fu, Fang-Wei
    Guang, Xuan
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (12): : 2728 - 2732
  • [25] Stochastic Chase Decoding of Reed-Solomon Codes
    Leroux, Camille
    Hemati, Saied
    Mannor, Shie
    Gross, Warren J.
    IEEE COMMUNICATIONS LETTERS, 2010, 14 (09) : 863 - 865
  • [26] A new algorithm for decoding Reed-Solomon codes
    Gao, SH
    COMMUNICATIONS, INFORMATION AND NETWORK SECURITY, 2003, 712 : 55 - 68
  • [27] Algorithm of recurrent decoding in Reed-Solomon codes
    Mazurkov, MI
    Mits, SV
    Chechelnitskii, VY
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 2003, 46 (5-6): : A34 - A38
  • [28] Limits to list decoding Reed-Solomon codes
    Guruswami, Venkatesan
    Rudra, Atri
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (08) : 3642 - 3649
  • [29] FAST TRANSFORMS FOR DECODING REED-SOLOMON CODES
    REED, IS
    TRUONG, TK
    MILLER, RL
    HUANG, JP
    IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1981, 128 (01) : 9 - 14
  • [30] Successive cancellation decoding of Reed-Solomon codes
    P. V. Trifonov
    Problems of Information Transmission, 2014, 50 : 303 - 312