Maximum-likelihood decoding of Reed-Solomon codes is NP-hard

被引:41
|
作者
Guruswami, V [1 ]
Vardy, A
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Comp Sci, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
linear codes; maximum-likelihood decoding; NP-hard problems; Reed-Solomon codes;
D O I
10.1109/TIT.2005.850102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Maximum-likelihood decoding is one of the central algorithmic problems in coding theory. It has been known for over 25 years that maximum-likelihood decoding of general linear codes is NP-hard. Nevertheless, it was so far unknown whether maximum-likelihood decoding remains hard for any specific family of codes with nontrivial algebraic structure. In this paper, we prove that maximum-likelihood decoding is NP-hard for the family of Reed-Solomon codes. We moreover show that maximum-likelihood decoding of Reed-Solomon codes remains hard even with unlimited preprocessing, thereby strengthening a result of Bruck and Naor.
引用
收藏
页码:2249 / 2256
页数:8
相关论文
共 50 条
  • [1] Maximum-Likelihood Decoding of Reed-Solomon Codes is NP-hard
    Guruswami, Venkatesan
    Vardy, Alexander
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 470 - 478
  • [2] Maximum likelihood decoding of Reed Solomon codes
    Ponnampalam, V
    Vucetic, B
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 368 - 368
  • [3] Maximum likelihood decoding of reed solomon codes
    Sudan, M
    37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 164 - 172
  • [4] Cryptography and decoding Reed-Solomon codes as a hard problem
    Kiayias, A
    Yung, M
    2005 IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Security, 2005, : 48 - 48
  • [5] DECODING OF REED-SOLOMON CODES
    MANDELBAUM, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (06) : 707 - +
  • [6] Computing maximum-likelihood bounds for Reed-Solomon codes over partial response channels
    Todd, Richard A.
    Cruz, J. R.
    2007 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-14, 2007, : 6205 - 6209
  • [7] Performance of adaptive belief propagation decoding and maximum-likelihood bounds for Reed-Solomon codes on partial-response channels
    Todd, Richard M.
    Cruz, J. R.
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (10) : 2555 - 2557
  • [8] On the NP-Hardness of Bounded Distance Decoding of Reed-Solomon Codes
    Gandikota, Venkata
    Ghazi, Badih
    Grigorescu, Elena
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2904 - 2908
  • [9] Sequential Decoding of Reed-Solomon Codes
    Miloslavskaya, Vera
    Trifonov, Peter
    2014 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA), 2014, : 453 - 457
  • [10] Parallel decoding of the Reed-Solomon codes
    Sukhov, EG
    AUTOMATION AND REMOTE CONTROL, 2001, 62 (12) : 2037 - 2041