Mappings of finite signed distortion: Sobolev spaces and composition of mappings

被引:15
|
作者
Kleprlik, Ludek [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Prague 8, Czech Republic
关键词
Finite distortion; Luzin condition; Composition operator;
D O I
10.1016/j.jmaa.2011.08.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the optimal conditions on a homeomorphism f : Omega -> R(n) which guarantee that the composition u o f belongs to the Sobolev space W(1,p) for every u is an element of W(1,q). To prove it we characterize when the inverse mapping f(-1) maps sets of measure zero onto sets of measure zero (satisfies the Luzin (N(-1)) condition). (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:870 / 881
页数:12
相关论文
共 50 条
  • [42] On the theory of mappings with finite area distortion
    Denis Kovtonyk
    Vladimir Ryazanov
    Journal d'Analyse Mathématique, 2008, 104
  • [43] Mappings of Finite Distortion:¶Discreteness and Openness
    Janne Kauhanen
    Pekka Koskela
    Jan Malý
    Archive for Rational Mechanics and Analysis, 2001, 160 : 135 - 151
  • [44] On the theory of mappings with finite area distortion
    Kovtonyk, Denis
    Ryazanov, Vladimir
    JOURNAL D ANALYSE MATHEMATIQUE, 2008, 104 (1): : 291 - 306
  • [45] Mappings of finite distortion: the degree of regularity
    Faraco, D
    Koskela, P
    Zhong, X
    ADVANCES IN MATHEMATICS, 2005, 190 (02) : 300 - 318
  • [46] Mappings of Finite Distortion of Polynomial Type
    Changyu Guo
    The Journal of Geometric Analysis, 2014, 24 : 1052 - 1063
  • [47] On the weak limit of mappings with finite distortion
    Yan, BS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) : 3335 - 3340
  • [48] Mappings of Finite Distortion: Decay of the Jacobian
    Pekka Koskela
    Jani Onninen
    Kai Rajala
    Journal of Geometric Analysis, 2012, 22 : 964 - 976
  • [49] Mappings of finite distortion on metric surfaces
    Meier, Damaris
    Rajala, Kai
    MATHEMATISCHE ANNALEN, 2025, 391 (02) : 2479 - 2507
  • [50] Topological mappings of finite area distortion
    Afanas'eva, Elena
    Golberg, Anatoly
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (02)