Mappings of finite signed distortion: Sobolev spaces and composition of mappings

被引:15
|
作者
Kleprlik, Ludek [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Prague 8, Czech Republic
关键词
Finite distortion; Luzin condition; Composition operator;
D O I
10.1016/j.jmaa.2011.08.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the optimal conditions on a homeomorphism f : Omega -> R(n) which guarantee that the composition u o f belongs to the Sobolev space W(1,p) for every u is an element of W(1,q). To prove it we characterize when the inverse mapping f(-1) maps sets of measure zero onto sets of measure zero (satisfies the Luzin (N(-1)) condition). (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:870 / 881
页数:12
相关论文
共 50 条
  • [21] Planar Mappings of Finite Distortion
    Pekka Koskela
    Computational Methods and Function Theory, 2011, 10 (2) : 663 - 678
  • [22] Slow mappings of finite distortion
    Onninen, Jani
    Pankka, Pekka
    MATHEMATISCHE ANNALEN, 2012, 354 (02) : 685 - 705
  • [23] Mappings with finite length distortion
    Martio, O
    Ryazanov, V
    Srebro, U
    Yakubov, E
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 93 (1): : 215 - 236
  • [24] Slow mappings of finite distortion
    Jani Onninen
    Pekka Pankka
    Mathematische Annalen, 2012, 354 : 685 - 705
  • [25] The limit of mappings with finite distortion
    Gehring, FW
    Iwaniec, T
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1999, 24 (01) : 253 - 264
  • [26] REGULARITY OF MAPPINGS OF FINITE DISTORTION
    Giannetti, Flavia
    Greco, Luigi
    Di Napoli, Antonia Passarelli
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2009, 40 (01) : 91 - 103
  • [27] Mappings with finite length distortion
    O. Martio
    V. Ryazanov
    U. Srebro
    E. Yakubov
    Journal d’Analyse Mathématique, 2004, 93 : 215 - 236
  • [28] Lectures on Mappings of Finite Distortion
    Hencl, Stanislav
    Koskela, Pekka
    LECTURES ON MAPPINGS OF FINITE DISTORTION, 2014, 2096 : 139 - 167
  • [29] Density of Lipschitz mappings in the class of Sobolev mappings between metric spaces
    Piotr Hajłasz
    Mathematische Annalen, 2009, 343 : 801 - 823
  • [30] Density of Lipschitz mappings in the class of Sobolev mappings between metric spaces
    Hajlasz, Piotr
    MATHEMATISCHE ANNALEN, 2009, 343 (04) : 801 - 823