Mappings of finite signed distortion: Sobolev spaces and composition of mappings

被引:15
|
作者
Kleprlik, Ludek [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Prague 8, Czech Republic
关键词
Finite distortion; Luzin condition; Composition operator;
D O I
10.1016/j.jmaa.2011.08.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the optimal conditions on a homeomorphism f : Omega -> R(n) which guarantee that the composition u o f belongs to the Sobolev space W(1,p) for every u is an element of W(1,q). To prove it we characterize when the inverse mapping f(-1) maps sets of measure zero onto sets of measure zero (satisfies the Luzin (N(-1)) condition). (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:870 / 881
页数:12
相关论文
共 50 条