Efficient relevance estimation and value calibration of evolutionary algorithm parameters

被引:49
|
作者
Nannen, Volker [1 ]
Eiben, A. E. [2 ]
机构
[1] Vrije Univ Amsterdam, Inst Sci Interchange, Turin, Italy
[2] Vrije Univ Amsterdam, Turin, Italy
关键词
D O I
10.1109/CEC.2007.4424460
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Calibrating the parameters of an evolutionary algorithm (EA) is a laborious task. The highly stochastic nature of an EA typically leads to a high variance of the measurements. The standard statistical method to reduce variance is measurement replication, i.e., averaging over several test runs with identical parameter settings. The computational cost of measurement replication scales with the variance and is often too high to allow for results of statistical significance. In this paper we study an alternative: the REVAC method for Relevance Estimation and Value Calibration, and we investigate how different levels of measurement replication influence the cost and quality of its calibration results. Two sets of experiments are reported: calibrating a genetic algorithm on standard benchmark problems, and calibrating a complex simulation in evolutionary agent-based economics. We find that measurement replication is not essential to REVAC, which emerges as a strong and efficient alternative to existing statistical methods.
引用
收藏
页码:103 / +
页数:2
相关论文
共 50 条
  • [1] Relevance Estimation and Value Calibration of Evolutionary Algorithm Parameters
    Nannen, Volker
    Eiben, A. E.
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 975 - 980
  • [2] A method for parameter calibration and relevance estimation in evolutionary-algorithms
    Nannen, Volker
    Eiben, A. E.
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 183 - +
  • [3] Efficient Estimation of Parameters of the Extreme Value Distribution
    Saha S.R.
    Samanta M.
    Mandal S.
    Sankhya B, 2014, 76 (2) : 190 - 209
  • [4] An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters
    Abdullah, Afnizanfaizal
    Deris, Safaai
    Anwar, Sohail
    Arjunan, Satya N. V.
    PLOS ONE, 2013, 8 (03):
  • [5] Application of the Differential Evolutionary Algorithm to the Estimation of Pipe Embedding Parameters
    Lu, Ping
    Chen, Shuang
    Sheng, Xiaozhen
    Gao, Yan
    SENSORS, 2022, 22 (10)
  • [6] AN EFFICIENT ESTIMATION ALGORITHM FOR THE MODEL PARAMETERS OF ROBOTIC MANIPULATORS
    HA, IJ
    KO, MS
    KWON, SK
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1989, 5 (03): : 386 - 394
  • [7] Estimation of Parameters using Evolutionary Algorithm in Hodgkin-Huxley Model
    Deka, R.
    Dutta, Jiten. Ch.
    PROCEEDINGS OF THE 2016 IEEE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL & ELECTRONICS, INFORMATION, COMMUNICATION & BIO INFORMATICS (IEEE AEEICB-2016), 2016, : 219 - 223
  • [8] Improving the estimation of parameters in induction motors using an evolutionary computation algorithm
    Oliva, Diego
    Hinojosa, Salvador
    Martins, Marcella S. R.
    Rodriguez-Esparza, Erick
    Ortega-Sanchez, Noe
    Perez-Cisneros, Marco
    2019 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2019, : 32 - 37
  • [9] Calibration of soil parameters based on intelligent algorithm using efficient sampling method
    Qian, Jiangu
    Xu, Wei
    Mu, Linlong
    Wu, Anhai
    UNDERGROUND SPACE, 2021, 6 (03) : 329 - 341
  • [10] Efficient estimation of regularization parameters via downsampling and the singular value expansion
    Renaut, Rosemary A.
    Horst, Michael
    Wang, Yang
    Cochran, Douglas
    Hansen, Jakob
    BIT NUMERICAL MATHEMATICS, 2017, 57 (02) : 499 - 529