Efficient relevance estimation and value calibration of evolutionary algorithm parameters

被引:49
|
作者
Nannen, Volker [1 ]
Eiben, A. E. [2 ]
机构
[1] Vrije Univ Amsterdam, Inst Sci Interchange, Turin, Italy
[2] Vrije Univ Amsterdam, Turin, Italy
关键词
D O I
10.1109/CEC.2007.4424460
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Calibrating the parameters of an evolutionary algorithm (EA) is a laborious task. The highly stochastic nature of an EA typically leads to a high variance of the measurements. The standard statistical method to reduce variance is measurement replication, i.e., averaging over several test runs with identical parameter settings. The computational cost of measurement replication scales with the variance and is often too high to allow for results of statistical significance. In this paper we study an alternative: the REVAC method for Relevance Estimation and Value Calibration, and we investigate how different levels of measurement replication influence the cost and quality of its calibration results. Two sets of experiments are reported: calibrating a genetic algorithm on standard benchmark problems, and calibrating a complex simulation in evolutionary agent-based economics. We find that measurement replication is not essential to REVAC, which emerges as a strong and efficient alternative to existing statistical methods.
引用
收藏
页码:103 / +
页数:2
相关论文
共 50 条
  • [21] Estimation of Evolutionary Parameters with Phylogenetic Trees
    Qiang Wang
    Laura A. Salter
    Dennis K. Pearl
    Journal of Molecular Evolution, 2002, 55 : 684 - 695
  • [22] Estimation of evolutionary parameters with phylogenetic trees
    Wang, Q
    Salter, LA
    Pearl, DK
    JOURNAL OF MOLECULAR EVOLUTION, 2002, 55 (06) : 684 - 695
  • [23] Evolutionary estimation of parameters of Johnson distributions
    Niermann, S
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (03) : 185 - 193
  • [24] A Computationally Efficient Solution Algorithm for Least Absolute Value State Estimation Problem
    Venkatraman, Ashwin
    Shchetinin, Dmitry
    Hug, Gabriela
    PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE), 2019,
  • [25] SwiftPruner: Reinforced Evolutionary Pruning for Efficient Ad Relevance
    Zhang, Li Lyna
    Homma, Youkow
    Wang, Yujing
    Wu, Min
    Yang, Mao
    Zhang, Ruofei
    Cao, Ting
    Shen, Wei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3654 - 3663
  • [27] Efficient Monte Carlo algorithm for restricted maximum likelihood estimation of genetic parameters
    Matilainen, Kaarina
    Mantysaari, Esa A.
    Stranden, Ismo
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2019, 136 (04) : 252 - 261
  • [28] An efficient evolutionary algorithm for the orienteering problem
    Kobeaga, Gorka
    Merino, Maria
    Lozano, Jose A.
    COMPUTERS & OPERATIONS RESEARCH, 2018, 90 : 42 - 59
  • [29] An efficient evolutionary image segmentation algorithm
    Ho, SY
    Lee, KZ
    PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 1327 - 1334
  • [30] A Fast and Efficient Estimation of the Parameters of a Model of Accident Frequencies via an MM Algorithm
    Geraldo, Issa Cherif
    Katchekpele, Edoh
    Kpanzou, Tchilabalo Abozou
    JOURNAL OF APPLIED MATHEMATICS, 2023, 2023