omg blueprint for trapped ion quantum computing with metastable states

被引:43
|
作者
Allcock, D. T. C. [1 ]
Campbell, W. C. [2 ,3 ,4 ]
Chiaverini, J. [5 ,6 ]
Chuang, I. L. [7 ]
Hudson, E. R. [2 ,3 ,4 ]
Moore, I. D. [1 ]
Ransford, A. [2 ,8 ]
Roman, C. [2 ,8 ]
Sage, J. M. [5 ,6 ]
Wineland, D. J. [1 ]
机构
[1] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Ctr Quantum Sci & Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Challenge Inst Quantum Computat, Los Angeles, CA 90095 USA
[5] MIT, Lincoln Lab, Lexington, MA 02420 USA
[6] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] MIT, Dept Phys, Dept Elect Engn & Comp Sci, Ctr Ultracold Atoms, Cambridge, MA 02139 USA
[8] Honeywell Quantum Solut, Broomfield, CO 80021 USA
关键词
All Open Access; Green;
D O I
10.1063/5.0069544
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum computers, much like their classical counterparts, will likely benefit from flexible qubit encodings that can be matched to different tasks. For trapped ion quantum processors, a common way to access multiple encodings is to use multiple, co-trapped atomic species. Here, we outline an alternative approach that allows flexible encoding capabilities in single-species systems through the use of long-lived metastable states as an effective, programmable second species. We describe the set of additional trapped ion primitives needed to enable this protocol and show that they are compatible with large-scale systems that are already in operation. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Blueprint for a microwave trapped ion quantum computer
    Lekitsch, Bjoern
    Weidt, Sebastian
    Fowler, Austin G.
    Molmer, Klaus
    Devitt, Simon J.
    Wunderlich, Christof
    Hensinger, Winfried K.
    SCIENCE ADVANCES, 2017, 3 (02):
  • [2] Experimental Quantum Channel Discrimination Using Metastable States of a Trapped Ion
    DeBry, Kyle
    Sinanan-Singh, Jasmine
    Bruzewicz, Colin D.
    Reens, David
    Kim, May E.
    Roychowdhury, Matthew P.
    McConnell, Robert
    Chuang, Isaac L.
    Chiaverini, John
    PHYSICAL REVIEW LETTERS, 2023, 131 (17)
  • [3] Trapped ion quantum computing turns 25
    Georgescu, Iulia
    NATURE REVIEWS PHYSICS, 2020, 2 (06) : 278 - 278
  • [4] Quantum Computing with Trapped Ion Hyperfine Qubits
    Blinov, B. B.
    Leibfried, D.
    Monroe, C.
    Wineland, D. J.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 45 - 59
  • [5] Macroscopic quantum states of a trapped ion
    Zeng, Heping
    Tang, Sing Hai
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (04): : 045402 - 045401
  • [6] Cryogenic setup for trapped ion quantum computing
    Brandl, M. F.
    van Mourik, M. W.
    Postler, L.
    Nolf, A.
    Lakhmanskiy, K.
    Paiva, R. R.
    Moller, S.
    Daniilidis, N.
    Haffner, H.
    Kaushal, V.
    Ruster, T.
    Warschburger, C.
    Kaufmann, H.
    Poschinger, U. G.
    Schmidt-Kaler, F.
    Schindler, P.
    Monz, T.
    Blatt, R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11):
  • [7] Quantum Computing with Trapped Ion Hyperfine Qubits
    B. B. Blinov
    D. Leibfried
    C. Monroe
    D. J. Wineland
    Quantum Information Processing, 2004, 3 : 45 - 59
  • [8] Trapped ion quantum computing turns 25
    Iulia Georgescu
    Nature Reviews Physics, 2020, 2 : 278 - 278
  • [9] Macroscopic quantum states of a trapped ion
    Zeng, HP
    Tang, SH
    PHYSICAL REVIEW A, 2000, 62 (04): : 4
  • [10] Application of OMEMS Technology in Trapped Ion Quantum Computing
    Crain, Stephen
    Mount, Emily
    Baek, So-Young
    Kim, Jungsang
    Maunz, Peter
    2015 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2015,