Application of OMEMS Technology in Trapped Ion Quantum Computing

被引:0
|
作者
Crain, Stephen [1 ]
Mount, Emily [1 ]
Baek, So-Young [1 ]
Kim, Jungsang [1 ]
Maunz, Peter [2 ]
机构
[1] Duke Univ, Fitzpatrick Inst Photon, Elect & Comp Engn Dept, Durham, NC 27708 USA
[2] Sandia Natl Labs, Albuquerque, NM 87123 USA
关键词
BEAM-STEERING SYSTEM; HIGH-SPEED;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Scalability is one of the main challenges of trapped ion based quantum computation, partly limited by the ability to manipulate the increasing number of quantum bits (qubits). For individual addressing of qubits, microelectromechanical systems (MEMS) technology allows one to design movable micromirrors to focus laser beams on individual ions and steer the focal point in two dimensions. This system is able to scale to multiple beams, has switching speeds comparable to typical single qubit gate times, and has negligible crosstalk on neighboring ions.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Enabling Trapped Ion Quantum Computing with MEMS Technology
    Kim, Jungsang
    Crain, Stephen
    Fang, Chao
    Joseph, James
    Kim, Jungsang
    Maunz, Peter
    2017 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2017, : 17 - 18
  • [2] Trapped ion quantum computing turns 25
    Georgescu, Iulia
    NATURE REVIEWS PHYSICS, 2020, 2 (06) : 278 - 278
  • [3] Quantum Computing with Trapped Ion Hyperfine Qubits
    Blinov, B. B.
    Leibfried, D.
    Monroe, C.
    Wineland, D. J.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 45 - 59
  • [4] Cryogenic setup for trapped ion quantum computing
    Brandl, M. F.
    van Mourik, M. W.
    Postler, L.
    Nolf, A.
    Lakhmanskiy, K.
    Paiva, R. R.
    Moller, S.
    Daniilidis, N.
    Haffner, H.
    Kaushal, V.
    Ruster, T.
    Warschburger, C.
    Kaufmann, H.
    Poschinger, U. G.
    Schmidt-Kaler, F.
    Schindler, P.
    Monz, T.
    Blatt, R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11):
  • [5] Quantum Computing with Trapped Ion Hyperfine Qubits
    B. B. Blinov
    D. Leibfried
    C. Monroe
    D. J. Wineland
    Quantum Information Processing, 2004, 3 : 45 - 59
  • [6] Trapped ion quantum computing turns 25
    Iulia Georgescu
    Nature Reviews Physics, 2020, 2 : 278 - 278
  • [7] Trapped-ion quantum computing: Progress and challenges
    Bruzewicz, Colin D.
    Chiaverini, John
    McConnell, Robert
    Sage, Jeremy M.
    APPLIED PHYSICS REVIEWS, 2019, 6 (02)
  • [8] RECENT RESULTS IN TRAPPED-ION QUANTUM COMPUTING AT NIST
    Kielpinski, D.
    Ben-Kish, A.
    Britton, J.
    Meyer, V.
    Rowe, M. A.
    Itano, W. M.
    Wineland, D. J.
    Sackett, C.
    Monroe, C.
    QUANTUM INFORMATION & COMPUTATION, 2001, 1 : 113 - 123
  • [9] Nanostructured antireflective coatings for trapped ion quantum computing experiments
    Bingel, A.
    Schulz, U.
    Rickelt, F.
    Gaertner, A.
    Schroeder, S.
    QUANTUM COMPUTING, COMMUNICATION, AND SIMULATION IV, 2024, 12911
  • [10] omg blueprint for trapped ion quantum computing with metastable states
    Allcock, D. T. C.
    Campbell, W. C.
    Chiaverini, J.
    Chuang, I. L.
    Hudson, E. R.
    Moore, I. D.
    Ransford, A.
    Roman, C.
    Sage, J. M.
    Wineland, D. J.
    APPLIED PHYSICS LETTERS, 2021, 119 (21)