Application of OMEMS Technology in Trapped Ion Quantum Computing

被引:0
|
作者
Crain, Stephen [1 ]
Mount, Emily [1 ]
Baek, So-Young [1 ]
Kim, Jungsang [1 ]
Maunz, Peter [2 ]
机构
[1] Duke Univ, Fitzpatrick Inst Photon, Elect & Comp Engn Dept, Durham, NC 27708 USA
[2] Sandia Natl Labs, Albuquerque, NM 87123 USA
关键词
BEAM-STEERING SYSTEM; HIGH-SPEED;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Scalability is one of the main challenges of trapped ion based quantum computation, partly limited by the ability to manipulate the increasing number of quantum bits (qubits). For individual addressing of qubits, microelectromechanical systems (MEMS) technology allows one to design movable micromirrors to focus laser beams on individual ions and steer the focal point in two dimensions. This system is able to scale to multiple beams, has switching speeds comparable to typical single qubit gate times, and has negligible crosstalk on neighboring ions.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Quantum computing with trapped ions
    Monroe, C.
    Itano, W.M.
    Kielpinski, D.
    King, B.E.
    Myatt, C.J.
    Sackett, C.A.
    Turchette, Q.A.
    Wineland, D.J.
    IQEC, International Quantum Electronics Conference Proceedings, 1999,
  • [22] Quantum computing with trapped ions
    Hughes, RJ
    METHODS FOR ULTRASENSITIVE DETECTION, 1998, 3270 : 120 - 130
  • [23] Quantum computing with trapped ions
    Haffner, H.
    Roos, C. F.
    Blatt, R.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (04): : 155 - 203
  • [24] Multilayer ion trap technology for scalable quantum computing and quantum simulation
    Bautista-Salvador, A.
    Zarantonello, G.
    Hahn, H.
    Preciado-Grijalva, A.
    Morgner, J.
    Wahnschaffe, M.
    Ospelkaus, C.
    NEW JOURNAL OF PHYSICS, 2019, 21 (04)
  • [25] Hybrid Quantum Computing with Conditional Beam Splitter Gate in Trapped Ion System
    Gan, H. C. J.
    Maslennikov, Gleb
    Tseng, Ko-Wei
    Nguyen, Chihuan
    Matsukevich, Dzmitry
    PHYSICAL REVIEW LETTERS, 2020, 124 (17)
  • [26] Trapped ions, entanglement, and quantum computing
    Myatt, CJ
    King, BE
    Kielpinski, D
    Leibfried, D
    Turchette, QA
    Wood, CS
    Itano, WM
    Monroe, C
    Wineland, DJ
    METHODS FOR ULTRASENSITIVE DETECTION, 1998, 3270 : 131 - 137
  • [27] Trapped Ion Quantum Networks
    Monroe, C.
    Duan, L. -M.
    Matsukevich, D.
    Maunz, P.
    Moehring, D. L.
    Ohnschenk, S.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3507 - 3507
  • [28] Visible-Wavelength Photonic Integrated Circuits for Trapped-Ion Quantum Computing
    Mehta, Karan K.
    West, Gavin N.
    Ram, Rajeev J.
    2017 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2017, : 29 - 30
  • [29] Trapped-ion quantum simulator: Experimental application to nonlinear interferometers
    Leibfried, D
    DeMarco, B
    Meyer, V
    Rowe, M
    Ben-Kish, A
    Britton, J
    Itano, WM
    Jelenkovic, B
    Langer, C
    Rosenband, T
    Wineland, DJ
    PHYSICAL REVIEW LETTERS, 2002, 89 (24)
  • [30] Micromotion-enhanced fast entangling gates for trapped-ion quantum computing
    Ratcliffe, Alexander K.
    Oberg, Lachlan M.
    Hope, Joseph J.
    PHYSICAL REVIEW A, 2020, 101 (05)