omg blueprint for trapped ion quantum computing with metastable states

被引:43
|
作者
Allcock, D. T. C. [1 ]
Campbell, W. C. [2 ,3 ,4 ]
Chiaverini, J. [5 ,6 ]
Chuang, I. L. [7 ]
Hudson, E. R. [2 ,3 ,4 ]
Moore, I. D. [1 ]
Ransford, A. [2 ,8 ]
Roman, C. [2 ,8 ]
Sage, J. M. [5 ,6 ]
Wineland, D. J. [1 ]
机构
[1] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Ctr Quantum Sci & Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Challenge Inst Quantum Computat, Los Angeles, CA 90095 USA
[5] MIT, Lincoln Lab, Lexington, MA 02420 USA
[6] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] MIT, Dept Phys, Dept Elect Engn & Comp Sci, Ctr Ultracold Atoms, Cambridge, MA 02139 USA
[8] Honeywell Quantum Solut, Broomfield, CO 80021 USA
关键词
All Open Access; Green;
D O I
10.1063/5.0069544
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum computers, much like their classical counterparts, will likely benefit from flexible qubit encodings that can be matched to different tasks. For trapped ion quantum processors, a common way to access multiple encodings is to use multiple, co-trapped atomic species. Here, we outline an alternative approach that allows flexible encoding capabilities in single-species systems through the use of long-lived metastable states as an effective, programmable second species. We describe the set of additional trapped ion primitives needed to enable this protocol and show that they are compatible with large-scale systems that are already in operation. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Motional quantum states of a trapped ion: measurement and its back action
    Wallentowitz, S.
    Vogel, W.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1996, 54 (04):
  • [42] Preparation of motional macroscopic quantum-interference states of a trapped ion
    Zheng, SB
    PHYSICAL REVIEW A, 1998, 58 (01): : 761 - 763
  • [43] Trapped ions, entanglement, and quantum computing
    Myatt, CJ
    King, BE
    Kielpinski, D
    Leibfried, D
    Turchette, QA
    Wood, CS
    Itano, WM
    Monroe, C
    Wineland, DJ
    METHODS FOR ULTRASENSITIVE DETECTION, 1998, 3270 : 131 - 137
  • [44] Trapped Ion Quantum Networks
    Monroe, C.
    Duan, L. -M.
    Matsukevich, D.
    Maunz, P.
    Moehring, D. L.
    Ohnschenk, S.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3507 - 3507
  • [45] Visible-Wavelength Photonic Integrated Circuits for Trapped-Ion Quantum Computing
    Mehta, Karan K.
    West, Gavin N.
    Ram, Rajeev J.
    2017 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2017, : 29 - 30
  • [46] Micromotion-enhanced fast entangling gates for trapped-ion quantum computing
    Ratcliffe, Alexander K.
    Oberg, Lachlan M.
    Hope, Joseph J.
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [47] Benchmarking and Analysis of Noisy Intermediate-Scale Trapped Ion Quantum Computing Architectures
    Kurlej, Arthur
    Alterman, Sam
    Obenland, Kevin M.
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 247 - 258
  • [48] Practical trapped-ion protocols for universal qudit-based quantum computing
    Low, Pei Jiang
    White, Brendan M.
    Cox, Andrew A.
    Day, Matthew L.
    Senko, Crystal
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [49] Quantum Computing With Trapped Ions: An Overview.
    Png, Wen-Han
    Hsu, Ting
    Liu, Tze-Wei
    Lin, Guin-Dar
    Chang, Ming-Shien
    IEEE NANOTECHNOLOGY MAGAZINE, 2022, 16 (04) : 30 - 36
  • [50] Quantum computing with trapped particles in microscopic potentials
    Calarco, T
    Briegel, HJ
    Jaksch, D
    Cirac, JI
    Zoller, P
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (9-11): : 945 - 955