ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

被引:7
|
作者
Chaubey, Sudhakar Kumar [1 ]
Shaikh, Absos Ali [2 ]
机构
[1] Shinas Coll Technol, Sect Math, Dept Informat Technol, POB 77, Shinas 324, Oman
[2] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
来源
关键词
(LCS)(3)-manifolds; symmetric spaces; concircular vector field; second order parallel tensors; eta-parallel Ricci tensor and Ricci solitons; 2ND-ORDER PARALLEL TENSORS; RICCI SOLITONS; COVARIANT DERIVATIVES; SYMMETRIC TENSORS; SUBMANIFOLDS; CURVATURE;
D O I
10.4134/CKMS.c180044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present paper is to study the Eisenhart problems of finding the properties of second order parallel tensors (symmetric and skew-symmetric) on a 3-dimensional LCS-manifold. We also investigate the properties of Ricci solitons, Ricci semisymmetric, locally phi-symmetric, eta-parallel Ricci tensor and a non-null concircular vector field on (LCS)3-manifolds.
引用
收藏
页码:303 / 319
页数:17
相关论文
共 50 条