ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS
被引:7
|
作者:
Chaubey, Sudhakar Kumar
论文数: 0引用数: 0
h-index: 0
机构:
Shinas Coll Technol, Sect Math, Dept Informat Technol, POB 77, Shinas 324, OmanShinas Coll Technol, Sect Math, Dept Informat Technol, POB 77, Shinas 324, Oman
Chaubey, Sudhakar Kumar
[1
]
论文数: 引用数:
h-index:
机构:
Shaikh, Absos Ali
[2
]
机构:
[1] Shinas Coll Technol, Sect Math, Dept Informat Technol, POB 77, Shinas 324, Oman
[2] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
来源:
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY
|
2019年
/
34卷
/
01期
关键词:
(LCS)(3)-manifolds;
symmetric spaces;
concircular vector field;
second order parallel tensors;
eta-parallel Ricci tensor and Ricci solitons;
2ND-ORDER PARALLEL TENSORS;
RICCI SOLITONS;
COVARIANT DERIVATIVES;
SYMMETRIC TENSORS;
SUBMANIFOLDS;
CURVATURE;
D O I:
10.4134/CKMS.c180044
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The aim of the present paper is to study the Eisenhart problems of finding the properties of second order parallel tensors (symmetric and skew-symmetric) on a 3-dimensional LCS-manifold. We also investigate the properties of Ricci solitons, Ricci semisymmetric, locally phi-symmetric, eta-parallel Ricci tensor and a non-null concircular vector field on (LCS)3-manifolds.
机构:
UNIV SANTIAGO DE COMPOSTELA,FAC MATEMAT,DEPT ANAL MATEMAT,E-15706 SANTIAGO,SPAINUNIV SANTIAGO DE COMPOSTELA,FAC MATEMAT,DEPT ANAL MATEMAT,E-15706 SANTIAGO,SPAIN
GarciaRio, E
Kupeli, DN
论文数: 0引用数: 0
h-index: 0
机构:
UNIV SANTIAGO DE COMPOSTELA,FAC MATEMAT,DEPT ANAL MATEMAT,E-15706 SANTIAGO,SPAINUNIV SANTIAGO DE COMPOSTELA,FAC MATEMAT,DEPT ANAL MATEMAT,E-15706 SANTIAGO,SPAIN
Kupeli, DN
NEW DEVELOPMENTS IN DIFFERENTIAL GEOMETRY,
1996,
350
: 201
-
211