ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

被引:7
|
作者
Chaubey, Sudhakar Kumar [1 ]
Shaikh, Absos Ali [2 ]
机构
[1] Shinas Coll Technol, Sect Math, Dept Informat Technol, POB 77, Shinas 324, Oman
[2] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
来源
关键词
(LCS)(3)-manifolds; symmetric spaces; concircular vector field; second order parallel tensors; eta-parallel Ricci tensor and Ricci solitons; 2ND-ORDER PARALLEL TENSORS; RICCI SOLITONS; COVARIANT DERIVATIVES; SYMMETRIC TENSORS; SUBMANIFOLDS; CURVATURE;
D O I
10.4134/CKMS.c180044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present paper is to study the Eisenhart problems of finding the properties of second order parallel tensors (symmetric and skew-symmetric) on a 3-dimensional LCS-manifold. We also investigate the properties of Ricci solitons, Ricci semisymmetric, locally phi-symmetric, eta-parallel Ricci tensor and a non-null concircular vector field on (LCS)3-manifolds.
引用
收藏
页码:303 / 319
页数:17
相关论文
共 50 条
  • [1] Anti-Invariant Lorentzian Submersions From Lorentzian Concircular Structure Manifolds
    Siddiqi, M. Danish
    Khan, Meraj A.
    Ishan, Amira A.
    Chaubey, S. K.
    FRONTIERS IN PHYSICS, 2022, 10
  • [2] Anti-Invariant Lorentzian Submersions From Lorentzian Concircular Structure Manifolds
    Siddiqi, M. Danish
    Khan, Meraj A.
    Ishan, Amira A.
    Chaubey, S.K.
    Frontiers in Physics, 2022, 10
  • [3] CHARACTERIZATION OF WARPED PRODUCT SUBMANIFOLDS OF LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS
    Hui, Shyamal Kumar
    Pal, Tanumoy
    Piscoran, Laurian Ioan
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (04): : 1303 - 1313
  • [4] Generalized warped product submanifolds of Lorentzian concircular structure manifolds
    Pal, Tanumoy
    Al-Dayel, Ibrahim
    Khan, Meraj Ali
    Bag, Biswabismita
    Hui, Shyamal Kumar
    Aloui, Foued
    AIMS MATHEMATICS, 2024, 9 (07): : 17997 - 18012
  • [5] FRENET CURVES IN 3-DIMENSIONAL CONTACT LORENTZIAN MANIFOLDS
    Akgun, Muslum Aykut
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (01): : 67 - 76
  • [6] Frenet curves in 3-dimensional δ-Lorentzian trans Sasakian manifolds
    Akgun, Muslum Aykut
    AIMS MATHEMATICS, 2022, 7 (01): : 199 - 211
  • [7] Riemannian Concircular Structure Manifolds
    Chaubey, Sudhakar Kumar
    Suh, Young Jin
    FILOMAT, 2022, 36 (19) : 6699 - 6711
  • [8] ALMOST QUASI-YAMABE SOLITONS ON LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS-[(LCS)n]
    Jun, Jae-Bok
    Siddiqi, Mohd Danish
    HONAM MATHEMATICAL JOURNAL, 2020, 42 (03): : 521 - 536
  • [9] Riemannian Concircular Structure Manifolds
    Chaubey, Sudhakar Kumar
    Suh, Young Jin
    FILOMAT, 2022, 36 (18) : 6699 - 6711
  • [10] Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
    Grochowski, Marek
    Warhurst, Ben
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11