Loose Hamilton Cycles in Random Uniform Hypergraphs

被引:0
|
作者
Dudek, Andrzej [1 ]
Frieze, Alan [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 01期
基金
美国国家科学基金会;
关键词
RANDOM REGULAR GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the random k-uniform hypergraph H(n,p;k) of order n each possible k-tuple appears independently with probability p. A loose Hamilton cycle is a cycle of order n in which every pair of adjacent edges intersects in a single vertex. We prove that if pn(k-1)/log n tends to infinity with n then lim Pr(H(n,p;k) contains a loose Hamilton cycle) = 1. n ->infinity 2(k-1)vertical bar n This is asymptotically best possible.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Packing tight Hamilton cycles in 3-uniform hypergraphs
    Frieze, Alan
    Krivelevich, Michael
    Loh, Po-Shen
    RANDOM STRUCTURES & ALGORITHMS, 2012, 40 (03) : 269 - 300
  • [32] A threshold result for loose Hamiltonicity in random regular uniform hypergraphs
    Altman, Daniel
    Greenhill, Catherine
    Isaev, Mikhail
    Ramadurai, Reshma
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 142 : 307 - 373
  • [33] The maximum spectral radii of weighted uniform loose cycles and unicyclic hypergraphs
    Du, Juanxia
    Xiao, Peng
    Xi, Weige
    FILOMAT, 2024, 38 (21) : 7635 - 7646
  • [34] On hypergraphs without loose cycles
    Han, Jie
    Kohayakawa, Yoshiharu
    DISCRETE MATHEMATICS, 2018, 341 (04) : 946 - 949
  • [35] Hamilton cycles in quasirandom hypergraphs
    Lenz, John
    Mubayi, Dhruv
    Mycroft, Richard
    RANDOM STRUCTURES & ALGORITHMS, 2016, 49 (02) : 363 - 378
  • [36] Closing gaps in problems related to Hamilton cycles in random graphs and hypergraphs
    Ferber, Asaf
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):
  • [37] An approximate ore-type result for tight Hamilton cycles in uniform hypergraphs
    Tang, Yucong
    Yan, Guiying
    DISCRETE MATHEMATICS, 2017, 340 (07) : 1528 - 1534
  • [38] LOCALIZED CODEGREE CONDITIONS FOR TIGHT HAMILTON CYCLES IN 3-UNIFORM HYPERGRAPHS
    Araujo, Pedro
    Piga, Simon
    Schacht, Mathias
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 147 - 169
  • [39] Tight Hamilton cycles in cherry-quasirandom 3-uniform hypergraphs
    Aigner-Horev, Elad
    Levy, Gil
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (03): : 412 - 443
  • [40] Packing Loose Hamilton Cycles
    Ferber, Asaf
    Luh, Kyle
    Montealegre, Daniel
    Oanh Nguyen
    COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (06): : 839 - 849