Loose Hamilton Cycles in Random Uniform Hypergraphs

被引:0
|
作者
Dudek, Andrzej [1 ]
Frieze, Alan [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 01期
基金
美国国家科学基金会;
关键词
RANDOM REGULAR GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the random k-uniform hypergraph H(n,p;k) of order n each possible k-tuple appears independently with probability p. A loose Hamilton cycle is a cycle of order n in which every pair of adjacent edges intersects in a single vertex. We prove that if pn(k-1)/log n tends to infinity with n then lim Pr(H(n,p;k) contains a loose Hamilton cycle) = 1. n ->infinity 2(k-1)vertical bar n This is asymptotically best possible.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Hamilton l-cycles in uniform hypergraphs
    Kuehn, Daniela
    Mycroft, Richard
    Osthus, Deryk
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (07) : 910 - 927
  • [22] PACKING TIGHT HAMILTON CYCLES IN UNIFORM HYPERGRAPHS
    Bal, Deepak
    Frieze, Alan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (02) : 435 - 451
  • [23] DIAGONAL RAMSEY NUMBERS OF LOOSE CYCLES IN UNIFORM HYPERGRAPHS
    Omidit, G. R.
    Shahsiah, M.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (03) : 1634 - 1669
  • [24] Extensions of Results on Rainbow Hamilton Cycles in Uniform Hypergraphs
    Andrzej Dudek
    Michael Ferrara
    Graphs and Combinatorics, 2015, 31 : 577 - 583
  • [25] Extensions of Results on Rainbow Hamilton Cycles in Uniform Hypergraphs
    Dudek, Andrzej
    Ferrara, Michael
    GRAPHS AND COMBINATORICS, 2015, 31 (03) : 577 - 583
  • [26] Decompositions of complete uniform hypergraphs into Hamilton Berge cycles
    Kuehn, Daniela
    Osthus, Deryk
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 126 : 128 - 135
  • [27] Packing hamilton cycles in random and pseudo-random hypergraphs
    Frieze, Alan
    Krivelevich, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (01) : 1 - 22
  • [28] Finding tight Hamilton cycles in random hypergraphs faster
    Allen, Peter
    Koch, Christoph
    Parczyk, Olaf
    Person, Yury
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 239 - 257
  • [29] Finding Tight Hamilton Cycles in Random Hypergraphs Faster
    Allen, Peter
    Koch, Christoph
    Parczyk, Olaf
    Person, Yury
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 28 - 36
  • [30] Packing tight Hamilton cycles in 3-uniform hypergraphs
    Frieze, Alan
    Krivelevich, Michael
    Loh, Po-Shen
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 913 - 932