Polynomial time approximation schemes for max-bisection on planar and geometric graphs

被引:23
|
作者
Jansen, K
Karpinski, M
Lingas, A
Seidel, E
机构
[1] Univ Kiel, Inst Informat & Prakt Math, D-24098 Kiel, Germany
[2] Univ Bonn, Dept Comp Sci, D-53117 Bonn, Germany
[3] Lund Univ, Dept Comp Sci, S-22100 Lund, Sweden
关键词
combinatorial optimization; NP-hardness; approximation algorithms; polynomial time approximation schemes; graph bisection; planar graphs;
D O I
10.1137/S009753970139567X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The max-bisection and min-bisection problems are to find a partition of the vertices of a graph into two equal size subsets that, respectively, maximizes or minimizes the number of edges with endpoints in both subsets. We design the first polynomial time approximation scheme for the max-bisection problem on arbitrary planar graphs solving a long-standing open problem. The method of solution involves designing exact polynomial time algorithms for computing optimal partitions of bounded treewidth graphs, in particular max- and min-bisection, which could be of independent interest. Using a similar method we design also the first polynomial time approximation scheme for max-bisection on unit disk graphs ( which could also be easily extended to other geometrically defined graphs).
引用
收藏
页码:110 / 119
页数:10
相关论文
共 50 条
  • [21] A Polynomial-Time Approximation Scheme for Steiner Tree in Planar Graphs
    Borradaile, Glencora
    Kenyon-Mathieu, Claire
    Klein, Philip
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 1285 - 1294
  • [22] A Polynomial Bound for Untangling Geometric Planar Graphs
    Prosenjit Bose
    Vida Dujmović
    Ferran Hurtado
    Stefan Langerman
    Pat Morin
    David R. Wood
    Discrete & Computational Geometry, 2009, 42 : 570 - 585
  • [23] A Polynomial Bound for Untangling Geometric Planar Graphs
    Bose, Prosenjit
    Dujmovic, Vida
    Hurtado, Ferran
    Langerman, Stefan
    Morin, Pat
    Wood, David R.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) : 570 - 585
  • [24] Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
    Arora, S
    JOURNAL OF THE ACM, 1998, 45 (05) : 753 - 782
  • [25] Polynomial time approximation schemes for geometric optimization problems in Euclidean metric spaces
    Mayr, R
    Schelten, A
    LECTURES ON PROOF VERIFICATION AND APPROXIMATION ALGORITHMS, 1998, 1367 : 313 - 323
  • [26] Parallel approximation schemes for problems on planar graphs
    Diaz, J
    Serna, MJ
    Toran, J
    ACTA INFORMATICA, 1996, 33 (04) : 387 - 408
  • [27] On the efficiency of polynomial time approximation schemes
    Cesati, M
    Trevisan, L
    INFORMATION PROCESSING LETTERS, 1997, 64 (04) : 165 - 171
  • [28] Contractions of Planar Graphs in Polynomial Time
    Kaminski, Marcin
    Paulusma, Daniel
    Thilikos, Dimitrios M.
    ALGORITHMS-ESA 2010, 2010, 6346 : 122 - +
  • [29] Polynomial-time approximation schemes for geometric min-sum median clustering
    Ostrovsky, R
    Rabani, Y
    JOURNAL OF THE ACM, 2002, 49 (02) : 139 - 156
  • [30] Approximation Schemes for Steiner Forest on Planar Graphs and Graphs of Bounded Treewidth
    Bateni, Mohammadhossein
    Hajiaghayi, Mohammadtaghi
    Marx, Daniel
    JOURNAL OF THE ACM, 2011, 58 (05)