Contractions of Planar Graphs in Polynomial Time

被引:0
|
作者
Kaminski, Marcin [1 ]
Paulusma, Daniel [2 ]
Thilikos, Dimitrios M. [3 ]
机构
[1] Univ Libre Bruxelles, Dept Informat, Brussels, Belgium
[2] Univ Durham, Dept Comp Sci, Durham DH1 3HP, England
[3] Natl & Kapodistrian Univ Athen, Dept Math, Athens, Greece
来源
ALGORITHMS-ESA 2010 | 2010年 / 6346卷
基金
英国工程与自然科学研究理事会;
关键词
planar graph; dual graph; contraction; topological minor; COMPUTATIONAL-COMPLEXITY; MINORS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that for every graph H, there exists a polynomial-time algorithm deciding if a planar graph can be contracted to H. We introduce contractions and topological minors of embedded (plane) graphs and show that a plane graph H is an embedded contraction of a plane graph G, if and only if, the dual of H is an embedded topological minor of the dual of G. We show how to reduce finding embedded topological minors in plane graphs to solving an instance of the disjoint paths problem. Finally, we extend the result to graphs embeddable in an arbitrary surface.
引用
收藏
页码:122 / +
页数:3
相关论文
共 50 条
  • [1] Planar polynomial of the graphs
    Tolue, Behnaz
    Doostabadi, Alireza
    Ayat, Sayed Masih
    QUAESTIONES MATHEMATICAE, 2024, 47 (06) : 1239 - 1256
  • [2] Finite contractions of graphs with polynomial growth
    Lukács, A
    Seifter, N
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (01) : 85 - 90
  • [3] Contracting planar graphs to contractions of triangulations
    Kaminski, Marcin
    Paulusma, Daniel
    Thilikos, Dimitrios M.
    JOURNAL OF DISCRETE ALGORITHMS, 2011, 9 (03) : 299 - 306
  • [4] A Polynomial-Time Approximation Scheme for Steiner Tree in Planar Graphs
    Borradaile, Glencora
    Kenyon-Mathieu, Claire
    Klein, Philip
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 1285 - 1294
  • [5] A Polynomial-Time Approximation Scheme for Facility Location on Planar Graphs
    Cohen-Addad, Vincent
    Pilipczuk, Marcin
    Pilipczuk, Michal
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 560 - 581
  • [6] On planar graphs of uniform polynomial growth
    Farzam Ebrahimnejad
    James R. Lee
    Probability Theory and Related Fields, 2021, 180 : 955 - 984
  • [7] On planar graphs of uniform polynomial growth
    Ebrahimnejad, Farzam
    Lee, James R.
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 180 (3-4) : 955 - 984
  • [8] Polynomial time approximation schemes for max-bisection on planar and geometric graphs
    Jansen, K
    Karpinski, M
    Lingas, A
    Seidel, E
    SIAM JOURNAL ON COMPUTING, 2005, 35 (01) : 110 - 119
  • [9] Counting Minimum (s, t)-Cuts in Weighted Planar Graphs in Polynomial Time
    Bezakova, Ivona
    Friedlander, Adam J.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2010, 2010, 6281 : 126 - +
  • [10] On the M-Polynomial of Planar Chemical Graphs
    Deutsch, Emeric
    Klavzar, Sandi
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 11 (02): : 65 - 71