Contractions of Planar Graphs in Polynomial Time

被引:0
|
作者
Kaminski, Marcin [1 ]
Paulusma, Daniel [2 ]
Thilikos, Dimitrios M. [3 ]
机构
[1] Univ Libre Bruxelles, Dept Informat, Brussels, Belgium
[2] Univ Durham, Dept Comp Sci, Durham DH1 3HP, England
[3] Natl & Kapodistrian Univ Athen, Dept Math, Athens, Greece
来源
ALGORITHMS-ESA 2010 | 2010年 / 6346卷
基金
英国工程与自然科学研究理事会;
关键词
planar graph; dual graph; contraction; topological minor; COMPUTATIONAL-COMPLEXITY; MINORS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that for every graph H, there exists a polynomial-time algorithm deciding if a planar graph can be contracted to H. We introduce contractions and topological minors of embedded (plane) graphs and show that a plane graph H is an embedded contraction of a plane graph G, if and only if, the dual of H is an embedded topological minor of the dual of G. We show how to reduce finding embedded topological minors in plane graphs to solving an instance of the disjoint paths problem. Finally, we extend the result to graphs embeddable in an arbitrary surface.
引用
收藏
页码:122 / +
页数:3
相关论文
共 50 条
  • [31] From planar graphs to embedded graphs - A new approach to Kauffman and Vogel's polynomial
    Carpentier, RP
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2000, 9 (08) : 975 - 986
  • [32] Access Time Oracle for Planar Graphs
    Deng, Ke
    Li, Jianxin
    Pang, Chaoyi
    Li, Jiuyong
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (08) : 1959 - 1970
  • [33] Hyperbolic intersection graphs and (quasi)-polynomial time
    Kisfaludi-Bak, Sandor
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 1621 - 1638
  • [34] Hyperbolic intersection graphs and (quasi)-polynomial time
    Kisfaludi-Bak, Sandor
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 1621 - 1638
  • [35] Factoring cardinal product graphs in polynomial time
    Imrich, W
    DISCRETE MATHEMATICS, 1998, 192 (1-3) : 119 - 144
  • [36] RECOGNIZING CIRCLE GRAPHS IN POLYNOMIAL-TIME
    GABOR, CP
    SUPOWIT, KJ
    HSU, WL
    JOURNAL OF THE ACM, 1989, 36 (03) : 435 - 473
  • [37] Bandwidth of bipartite permutation graphs in polynomial time
    Heggernes, Pinar
    Kratsch, Dieter
    Meister, Daniel
    JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (04) : 533 - 544
  • [38] Bandwidth of bipartite permutation graphs in polynomial time
    Heggernes, Pinar
    Kratsch, Dieter
    Meister, Daniel
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 216 - +
  • [39] Colouring random graphs in expected polynomial time
    Coja-Oghlan, A
    Taraz, A
    STACS 2003, PROCEEDINGS, 2003, 2607 : 487 - 498
  • [40] THE HAMILTONIAN CIRCUIT PROBLEM IS POLYNOMIAL FOR 4-CONNECTED PLANAR GRAPHS
    GOUYOUBEAUCHAMPS, D
    SIAM JOURNAL ON COMPUTING, 1982, 11 (03) : 529 - 539