Contractions of Planar Graphs in Polynomial Time

被引:0
|
作者
Kaminski, Marcin [1 ]
Paulusma, Daniel [2 ]
Thilikos, Dimitrios M. [3 ]
机构
[1] Univ Libre Bruxelles, Dept Informat, Brussels, Belgium
[2] Univ Durham, Dept Comp Sci, Durham DH1 3HP, England
[3] Natl & Kapodistrian Univ Athen, Dept Math, Athens, Greece
来源
ALGORITHMS-ESA 2010 | 2010年 / 6346卷
基金
英国工程与自然科学研究理事会;
关键词
planar graph; dual graph; contraction; topological minor; COMPUTATIONAL-COMPLEXITY; MINORS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that for every graph H, there exists a polynomial-time algorithm deciding if a planar graph can be contracted to H. We introduce contractions and topological minors of embedded (plane) graphs and show that a plane graph H is an embedded contraction of a plane graph G, if and only if, the dual of H is an embedded topological minor of the dual of G. We show how to reduce finding embedded topological minors in plane graphs to solving an instance of the disjoint paths problem. Finally, we extend the result to graphs embeddable in an arbitrary surface.
引用
收藏
页码:122 / +
页数:3
相关论文
共 50 条
  • [21] Drawing Planar Graphs with Few Segments on a Polynomial Grid
    Kindermann, Philipp
    Mchedlidze, Tamara
    Schneck, Thomas
    Symvonis, Antonios
    GRAPH DRAWING AND NETWORK VISUALIZATION, 2019, 11904 : 416 - 429
  • [22] Dimension is polynomial in height for posets with planar cover graphs
    Kozik, Jakub
    Micek, Piotr
    Trotter, William T.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 165 : 164 - 196
  • [23] An O(n(epsilon)) Space and Polynomial Time Algorithm for Reachability in Directed Layered Planar Graphs
    Chakraborty, Diptarka
    Tewari, Raghunath
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2018, 9 (04)
  • [24] Polynomial-time solvability of the independent set problem in a certain class of subcubic planar graphs
    Malyshev D.S.
    Sirotkin D.V.
    Journal of Applied and Industrial Mathematics, 2017, 11 (3) : 400 - 414
  • [25] Polynomial-time algorithm for weighted efficient domination problem on diameter three planar graphs
    Abrishami, G.
    Rahbarnia, E.
    INFORMATION PROCESSING LETTERS, 2018, 140 : 25 - 29
  • [26] ON THE COVER TIME OF PLANAR GRAPHS
    Jonasson, Johan
    Schramm, Oded
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 : 85 - 90
  • [27] Recognizing circle graphs in polynomial time
    Gabor, Csaba P., 1600, (36):
  • [28] Recognizing hyperelliptic graphs in polynomial time
    Bodewes, Jelco M.
    Bodlaender, Hans L.
    Cornelissen, Gunther
    van der Wegen, Marieke
    THEORETICAL COMPUTER SCIENCE, 2020, 815 : 121 - 146
  • [29] Capturing Polynomial Time on Interval Graphs
    Laubner, Bastian
    25TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2010), 2010, : 199 - 208
  • [30] AN EFFICIENT POLYNOMIAL TIME APPROXIMATION SCHEME FOR THE VERTEX COVER P3 PROBLEM ON PLANAR GRAPHS
    Tu, Jianhua
    Shi, Yongtang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 55 - 65