MULTIPLE NODAL SOLUTIONS OF NONLINEAR CHOQUARD EQUATIONS

被引:0
|
作者
Huang, Zhihua [1 ]
Yang, Jianfu [1 ]
Yu, Weilin [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Nonlinear Choquard equations; nodal solutions; nonlocal term; SCHRODINGER-POISSON SYSTEM; EXISTENCE; UNIQUENESS; ENERGY; STATES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the existence of multiple nodal solutions of the nonlinear Choquard equation -Delta u + u = (vertical bar x vertical bar(-1) * vertical bar u vertical bar(p)) vertical bar u vertical bar(p-2)u in R-3, u is an element of H-1 (R-3), where p is an element of (5/2,5). We show that for any positive integer k, the above problem has at least one radially symmetrical solution changing sign exactly k-times.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] LOCALIZED NODAL SOLUTIONS FOR SEMICLASSICAL CHOQUARD EQUATIONS WITH CRITICAL GROWTH
    Zhang, Bo
    Zhang, Wei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (19)
  • [12] Existence and nonexistence of nodal solutions for Choquard type equations with perturbation
    Wang, Tao
    Guo, Hui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 480 (02)
  • [13] Normalized solutions for a class of nonlinear Choquard equations
    Bartsch, Thomas
    Liu, Yanyan
    Liu, Zhaoli
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (05):
  • [14] Nodal solutions for the Choquard equation
    Ghimenti, Marco
    Van Schaftingen, Jean
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) : 107 - 135
  • [15] Multiple solutions to a magnetic nonlinear Choquard equation
    Cingolani, Silvia
    Clapp, Monica
    Secchi, Simone
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (02): : 233 - 248
  • [16] Multiple solutions to a magnetic nonlinear Choquard equation
    Silvia Cingolani
    Mónica Clapp
    Simone Secchi
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 233 - 248
  • [17] Symmetric positive solutions to nonlinear Choquard equations with potentials
    Liliane Maia
    Benedetta Pellacci
    Delia Schiera
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [18] LOCALIZED NODAL SOLUTIONS FOR SEMICLASSICAL QUASILINEAR CHOQUARD EQUATIONS WITH SUBCRITICAL GROWTH
    Zhang, Bo
    Liu, Xiangqing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (11) : 1 - 29
  • [19] Solutions to discrete nonlinear Kirchhoff-Choquard equations
    Wang, Lidan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (05)
  • [20] Symmetric positive solutions to nonlinear Choquard equations with potentials
    Maia, Liliane
    Pellacci, Benedetta
    Schiera, Delia
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (02)