Quantization of the higher derivative Maxwell-Chern-Simons-Proca model based on BFT method

被引:7
|
作者
Sararu, Silviu Constantin [1 ]
Udristioiu, Mihaela Tinca [1 ]
机构
[1] Univ Craiova, Dept Phys, 13 AI Cuza Str, Craiova 200585, Romania
关键词
Higher derivative theories; second-class constraints; quantization methods; SELF-DUAL MODEL; BRST QUANTIZATION; GAUGE-INVARIANCE; DYNAMIC-SYSTEMS; EQUIVALENCE; CONVERSION; 1ST-CLASS; PARTICLE; THEOREM;
D O I
10.1142/S0217732316502059
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the Batalin, Fradkin and Tyutin approach, the second-class higher derivative Maxwell-Chern-Simons-Proca model is converted into a mixed constrained one and then, the Hamiltonian path integral of the resulting mixed constrained system is constructed. The Hamiltonian path integral takes a manifestly Lorentz covariant form.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] The Hamilton–Jacobi analysis for higher-order Maxwell–Chern–Simons gauge theory
    Alberto Escalante
    Víctor Alberto Zavala-Pérez
    The European Physical Journal Plus, 136
  • [32] Non-Abelian Proca model based on the improved BFT formalism
    Park, MI
    Park, YJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (13): : 2179 - 2199
  • [33] CANONICAL QUANTIZATION OF THE WZW MODEL WITH DEFECTS AND CHERN-SIMONS THEORY
    Sarkissian, Gor
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (07): : 1367 - 1388
  • [34] Higher derivative Chern-Simons extension in the noncommutative QED3
    Ghasemkhani, M.
    Bufalo, R.
    PHYSICAL REVIEW D, 2015, 91 (12):
  • [35] NON-ABELIAN HIGHER-DERIVATIVE CHERN-SIMONS THEORIES
    FOUSSATS, A
    MANAVELLA, E
    REPETTO, C
    ZANDRON, OP
    ZANDRON, OS
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (07) : 1037 - 1053
  • [36] Non-Abelian Higher-Derivative Chern-Simons Theories
    Foussats, A.
    Manavella, E.
    Repetto, C.
    Zandron, O. P.
    International Journal of Theoretical Physics, 34 (07):
  • [37] BRST deformations and stability in the higher derivative Chern-Simons gauge theory
    Dai, Jialiang
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (24)
  • [38] Canonical quantization of lattice Higgs-Maxwell-Chern-Simons fields: Osterwalder-Schrader positivity
    Bowman, Daniel A.
    Challifour, John L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (03)
  • [39] PATH-INTEGRAL QUANTIZATION AND THE GROUND-STATE FUNCTIONAL FOR MAXWELL-CHERN-SIMONS SYSTEM
    FENG, SS
    QIU, XJ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (09) : 1827 - 1833
  • [40] Canonical quantization of lattice Higgs-Maxwell-Chern-Simons fields: Krein self-adjointness
    Bowman, Daniel A.
    Challifour, John L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)