PATH-INTEGRAL QUANTIZATION AND THE GROUND-STATE FUNCTIONAL FOR MAXWELL-CHERN-SIMONS SYSTEM

被引:6
|
作者
FENG, SS [1 ]
QIU, XJ [1 ]
机构
[1] SHANGHAI UNIV,DEPT PHYS,SHANGHAI 201800,PEOPLES R CHINA
关键词
D O I
10.1007/BF00674063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Maxwell-Chern-Simons system as a constrained system is quantized in the path integral formulation. Using the functional partition function and the method proposed by Fradkin, we obtain the correct absolute value squared of the ground state.
引用
收藏
页码:1827 / 1833
页数:7
相关论文
共 50 条
  • [1] Quantization effects for Maxwell-Chern-Simons vortices
    Han, Jongmin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) : 265 - 274
  • [2] ON THE QUANTIZATION OF THE MASSIVE MAXWELL-CHERN-SIMONS MODEL
    Sararu, Silviu-Constantin
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (1-2): : 253 - 259
  • [3] COULOMB GAUGE QUANTIZATION OF THE MAXWELL-CHERN-SIMONS THEORY
    DEVECCHI, FP
    FLECK, M
    GIROTTI, HO
    ANNALS OF PHYSICS, 1995, 242 (02) : 275 - 291
  • [4] PATH-INTEGRAL MEASURE FOR CHERN-SIMONS THEORY WITHIN THE STOCHASTIC QUANTIZATION APPROACH
    CUGLIANDOLO, LF
    LOZANO, G
    SCHAPOSNIK, FA
    PHYSICS LETTERS B, 1991, 253 (1-2) : 90 - 96
  • [5] THE FUNCTIONAL SQUEEZE OPERATOR ALGEBRA IN MAXWELL-CHERN-SIMONS ELECTRODYNAMICS
    Andrianov, A. A.
    Kolevatov, S. S.
    Soldati, R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 184 (03) : 1213 - 1223
  • [6] A Maxwell-Chern-Simons model of a collectively interacting particle system
    Kaniadakis, G
    Quarati, P
    Scarfone, AM
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 121 - 126
  • [7] Path-integral invariants in abelian Chern-Simons theory
    Guadagnini, E.
    Thuillier, F.
    NUCLEAR PHYSICS B, 2014, 882 : 450 - 484
  • [8] Casimir Force for a Maxwell-Chern-Simons System via Model Transformation
    de Medeiros Neto, J. F.
    Ozela, Rodrigo F.
    Correa Junior, R. O.
    Ramos, Rudnei O.
    BRAZILIAN JOURNAL OF PHYSICS, 2014, 44 (06) : 798 - 804
  • [9] Casimir Force for a Maxwell-Chern-Simons System via Model Transformation
    J. F. de Medeiros Neto
    Rodrigo F. Ozela
    R. O. Correa
    Rudnei O. Ramos
    Brazilian Journal of Physics, 2014, 44 : 798 - 804
  • [10] On a nonlinear elliptic system from Maxwell-Chern-Simons vortex theory
    Ricciardi, T
    ASYMPTOTIC ANALYSIS, 2003, 35 (02) : 113 - 126