SLk-TILINGS OF THE PLANE

被引:28
|
作者
Bergeron, Francois [1 ]
Reutenauer, Christophe [1 ]
机构
[1] Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MODELS;
D O I
10.1215/ijm/1299679749
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of (bi-infinite) arrays having all adjacent k x k adjacent minors equal to one. If we further add the condition that all adjacent (k - 1) x (k - 1) minors be nonzero, then these arrays are necessarily of rank k. It follows that we can explicit construct all of them. Several nice properties are made apparent. In particular, we revisit, with this perspective, the notion of frieze patterns of Coxeter. This shed new light on their properties. A connexion is also established with the notion of T-systems of Statistical Physics.
引用
收藏
页码:263 / 300
页数:38
相关论文
共 50 条
  • [41] Counting perfect colourings of plane regular tilings
    Frettloeh, Dirk
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2008, 223 (11-12): : 773 - 776
  • [42] Navigation in Tilings of the Hyperbolic Plane and Possible Applications
    Margenstern, Maurice
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 376 - 382
  • [43] HEXAGON TILINGS OF THE PLANE THAT ARE NOT EDGE-TO-EDGE
    Frettloeh, D.
    Glazyrin, A.
    Langi, Z.
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (02) : 341 - 349
  • [44] Perfect precise colorings of plane semiregular tilings
    Loquias, Manuel Joseph C.
    Santos, Rovin B.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 : 440 - 451
  • [45] Aperiodic tilings of the hyperbolic plane by convex polygons
    G. A. Margulis
    S. Mozes
    Israel Journal of Mathematics, 1998, 107 : 319 - 325
  • [46] 91-TYPES OF ISOGONAL TILINGS IN PLANE
    GRUNBAUM, B
    SHEPHARD, GC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 242 (AUG) : 335 - 353
  • [47] Semi-regular Tilings of the Hyperbolic Plane
    Basudeb Datta
    Subhojoy Gupta
    Discrete & Computational Geometry, 2021, 65 : 531 - 553
  • [48] THE CLASSIFICATION OF 2-ISOHEDRAL TILINGS OF THE PLANE
    DELGADO, O
    HUSON, D
    ZAMORZAEVA, E
    GEOMETRIAE DEDICATA, 1992, 42 (01) : 43 - 117
  • [50] Configuration space partitioning in tilings of a bounded region of the plane
    Aguilar, Eduardo J.
    Barbosa, Valmir C.
    Donangelo, Raul
    Souza, Sergio R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2025, 36 (02):