SLk-TILINGS OF THE PLANE

被引:28
|
作者
Bergeron, Francois [1 ]
Reutenauer, Christophe [1 ]
机构
[1] Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MODELS;
D O I
10.1215/ijm/1299679749
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of (bi-infinite) arrays having all adjacent k x k adjacent minors equal to one. If we further add the condition that all adjacent (k - 1) x (k - 1) minors be nonzero, then these arrays are necessarily of rank k. It follows that we can explicit construct all of them. Several nice properties are made apparent. In particular, we revisit, with this perspective, the notion of frieze patterns of Coxeter. This shed new light on their properties. A connexion is also established with the notion of T-systems of Statistical Physics.
引用
收藏
页码:263 / 300
页数:38
相关论文
共 50 条
  • [31] Automatic counting of tilings of skinny plane regions
    Ekhad, Shalosh B.
    Zeilberger, Doron
    SURVEYS IN COMBINATORICS 2013, 2013, 409 : 363 - 378
  • [32] Rapid Convergence to Frequency for Substitution Tilings of the Plane
    Aliste-Prieto, Jose
    Coronel, Daniel
    Gambaudo, Jean-Marc
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (02) : 365 - 380
  • [33] Hexagon tilings of the plane that are not edge-to-edge
    D. Frettlöh
    A. Glazyrin
    Z. Lángi
    Acta Mathematica Hungarica, 2021, 164 : 341 - 349
  • [34] SOME 2-ISOHEDRAL TILINGS OF THE PLANE
    ROTH, RL
    GEOMETRIAE DEDICATA, 1991, 39 (01) : 43 - 54
  • [35] Rapid Convergence to Frequency for Substitution Tilings of the Plane
    José Aliste-Prieto
    Daniel Coronel
    Jean-Marc Gambaudo
    Communications in Mathematical Physics, 2011, 306 : 365 - 380
  • [36] Tilings of the plane and Thurston semi-norm
    Chazottes, Jean-Rene
    Gambaudo, Jean-Marc
    Gautero, Francois
    GEOMETRIAE DEDICATA, 2014, 173 (01) : 129 - 142
  • [37] Semi-regular Tilings of the Hyperbolic Plane
    Datta, Basudeb
    Gupta, Subhojoy
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (02) : 531 - 553
  • [38] Quasiperiodic plane tilings based on stepped surfaces
    Shutov, A. V.
    Maleev, A. V.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : 376 - 382
  • [39] PERFECT COLORINGS OF TRANSITIVE TILINGS AND PATTERNS IN PLANE
    GRUNBAUM, B
    SHEPHARD, GC
    DISCRETE MATHEMATICS, 1977, 20 (03) : 235 - 247
  • [40] Tilings of the plane and Thurston semi-norm
    Jean-René Chazottes
    Jean-Marc Gambaudo
    François Gautero
    Geometriae Dedicata, 2014, 173 : 129 - 142