Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography

被引:15
|
作者
Dolganova, Irina N. [1 ,2 ,3 ]
Chernomyrdin, Nikita V. [1 ,2 ,4 ]
Aleksandrova, Polina V. [1 ]
Beshplav, Sheykh-Islyam T. [5 ]
Potapov, Alexander A. [5 ]
Reshetov, Igor V. [2 ]
Kurlov, Vladimir N. [3 ]
Tuchin, Valery V. [6 ]
Zaytsev, Kirill I. [1 ,2 ,4 ]
机构
[1] Bauman Moscow State Tech Univ, Lab Terahert Technol, Moscow, Russia
[2] Sechenov First Moscow State Med Univ, Moscow, Russia
[3] RAS, Inst Solid State Phys, Lab Shaped Crystals, Chernogolovka, Russia
[4] RAS, Prokhorov Gen Phys Inst, Lab Submillimeter Dielectr Spect, Moscow, Russia
[5] Burdenko Neurosurg Inst, Moscow, Russia
[6] ITMO Univ, Lab Femtomed, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
optical coherence tomography; wavelet analysis; denoising; filtration; nanoparticles; neuroimaging; meningioma; INTRAOPERATIVE MRI; SPECKLE REDUCTION; IMAGES; TISSUE; VIVO; IDENTIFICATION; FLUORESCENCE;
D O I
10.1117/1.JBO.23.9.091406
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present the nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography (OCT). It employs an experimental training algorithm based on imaging of a test-object, made of the colloidal suspension of the monodisperse nanoparticles and contains the microscale inclusions. The geometry and the scattering properties of the test-object are known a priori allowing us to set the criteria for the training algorithm. Using a wide set of the wavelet kernels and the wavelet-domain filtration approaches, the appropriate filter is constructed based on the test-object imaging. We apply the proposed approach and chose an efficient wavelet denoising procedure by considering the combinations of the decomposition basis from five wavelet families with eight types of the filtration threshold. We demonstrate applicability of the wavelet-filtering for the in vitro OCT image of human brain meningioma. The observed results prove high efficiency of the proposed OCT image denoising technique. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography
    Sergey Yu. Ksenofontov
    Pavel A. Shilyagin
    Dmitry A. Terpelov
    Valentin M. Gelikonov
    Grigory V. Gelikonov
    Frontiers of Optoelectronics, 2020, 13 : 393 - 401
  • [42] A SPARSITY-BASED SIMPLIFICATION METHOD FOR SEGMENTATION OF SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGES
    Meiniel, William
    Gan, Yu
    Olivo-Marin, Jean-Christophe
    Angelini, Elsa
    WAVELETS AND SPARSITY XVII, 2017, 10394
  • [43] Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography
    Ksenofontov, Sergey Yu.
    Shilyagin, Pavel A.
    Terpelov, Dmitry A.
    Gelikonov, Valentin M.
    Gelikonov, Grigory V.
    FRONTIERS OF OPTOELECTRONICS, 2020, 13 (04) : 393 - 401
  • [44] Application of the maximum entropy method to spectral-domain optical coherence tomography for enhancing axial resolution
    Takahashi, Yoshiyuki
    Watanabe, Yuuki
    Sato, Manabu
    APPLIED OPTICS, 2007, 46 (22) : 5228 - 5236
  • [45] Group-delay-based phase-shifting method for Fourier domain optical coherence tomography
    Cheng, Hsu-Chih
    Huang, Jen-Fa
    Liu, Yi-Cheng
    Chang, Chien-Wen
    Chang, Yao-Tang
    OPTICAL ENGINEERING, 2009, 48 (07)
  • [46] Motion Artifact Suppression Method for the Clinical Application of Otoscopic Spectral-Domain Optical Coherence Tomography
    Ksenofontov, Sergey Y.
    Shilyagin, Pavel A.
    Gelikonov, Valentin M.
    Gelikonov, Grigory V.
    PHOTONICS, 2023, 10 (07)
  • [47] Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography
    Sergey YuKSENOFONTOV
    Pavel ASHILYAGIN
    Dmitry ATERPELOV
    Valentin MGELIKONOV
    Grigory VGELIKONOV
    Frontiers of Optoelectronics, 2020, 13 (04) : 393 - 401
  • [48] In-focus line field Fourier-domain optical coherence tomography by complex numerical method
    Nakamura, Yoshifumi
    Sugisaka, Jun-ichiro
    Yasuno, Yoshiaki
    Sando, Yusuke
    Endo, Takashi
    Itoh, Masahide
    Yatagai, Toyohiko
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE X, 2006, 6079
  • [49] Speckle Noise Reduction in Spectral Domain Optical Coherence Tomography Retinal Images Using Fuzzification Method
    Abbirame, K. S.
    Padmasini, N.
    Umamaheshwari, R.
    Yacin, Mohamed S.
    2014 INTERNATIONAL CONFERENCE ON GREEN COMPUTING COMMUNICATION AND ELECTRICAL ENGINEERING (ICGCCEE), 2014,
  • [50] Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform
    Chitchian, Shahab
    Mayer, Markus A.
    Boretsky, Adam R.
    van Kuijk, Frederik J.
    Motamedi, Massoud
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (11)