Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography

被引:15
|
作者
Dolganova, Irina N. [1 ,2 ,3 ]
Chernomyrdin, Nikita V. [1 ,2 ,4 ]
Aleksandrova, Polina V. [1 ]
Beshplav, Sheykh-Islyam T. [5 ]
Potapov, Alexander A. [5 ]
Reshetov, Igor V. [2 ]
Kurlov, Vladimir N. [3 ]
Tuchin, Valery V. [6 ]
Zaytsev, Kirill I. [1 ,2 ,4 ]
机构
[1] Bauman Moscow State Tech Univ, Lab Terahert Technol, Moscow, Russia
[2] Sechenov First Moscow State Med Univ, Moscow, Russia
[3] RAS, Inst Solid State Phys, Lab Shaped Crystals, Chernogolovka, Russia
[4] RAS, Prokhorov Gen Phys Inst, Lab Submillimeter Dielectr Spect, Moscow, Russia
[5] Burdenko Neurosurg Inst, Moscow, Russia
[6] ITMO Univ, Lab Femtomed, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
optical coherence tomography; wavelet analysis; denoising; filtration; nanoparticles; neuroimaging; meningioma; INTRAOPERATIVE MRI; SPECKLE REDUCTION; IMAGES; TISSUE; VIVO; IDENTIFICATION; FLUORESCENCE;
D O I
10.1117/1.JBO.23.9.091406
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present the nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography (OCT). It employs an experimental training algorithm based on imaging of a test-object, made of the colloidal suspension of the monodisperse nanoparticles and contains the microscale inclusions. The geometry and the scattering properties of the test-object are known a priori allowing us to set the criteria for the training algorithm. Using a wide set of the wavelet kernels and the wavelet-domain filtration approaches, the appropriate filter is constructed based on the test-object imaging. We apply the proposed approach and chose an efficient wavelet denoising procedure by considering the combinations of the decomposition basis from five wavelet families with eight types of the filtration threshold. We demonstrate applicability of the wavelet-filtering for the in vitro OCT image of human brain meningioma. The observed results prove high efficiency of the proposed OCT image denoising technique. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 50 条
  • [31] In-focus Fourier-domain Optical Coherence Tomography by Complex Numerical Method
    Yoshiaki Yasuno
    Yusuke Sando
    Jun-ichiro Sugisaka
    Takashi Endo
    Shuichi Makita
    Gouki Aoki
    Masahide Itoh
    Toyohiko Yatagai
    Optical and Quantum Electronics, 2005, 37 : 1185 - 1189
  • [32] A New Method for Motion Artifact Suppression in Spectral-Domain Optical Coherence Tomography
    S. Yu. Ksenofontov
    P. A. Shilyagin
    D. A. Terpelov
    D. V. Shabanov
    V. M. Gelikonov
    G. V. Gelikonov
    Instruments and Experimental Techniques, 2023, 66 : 1037 - 1043
  • [33] In-focus Fourier-domain optical coherence tomography by complex numerical method
    Sando, Y
    Yasuno, Y
    Sugisaka, J
    Endo, T
    Makita, S
    Aoki, G
    Itoh, M
    Yatagai, T
    APBP 2004: SECOND ASIAN AND PACIFIC RIM SYMPOSIUM ON BIOPHOTONICS, PROCEEDINGS, 2004, : 16 - 17
  • [34] A New Method for Motion Artifact Suppression in Spectral-Domain Optical Coherence Tomography
    Ksenofontov, S. Yu.
    Shilyagin, P. A.
    Terpelov, D. A.
    Shabanov, D. V.
    Gelikonov, V. M.
    Gelikonov, G. V.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2023, 66 (06) : 1037 - 1043
  • [35] Improved wavelet hierarchical threshold filter method for optical coherence tomography image de-noising
    Cao, Jing
    Wang, Pinghe
    Wu, Bo
    Shi, Guohua
    Zhang, Yan
    Li, Xiqi
    Zhang, Yudong
    Liu, Yong
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2018, 11 (03)
  • [36] Denoising during Optical Coherence Tomography of the Prostate Nerves via Bivariate Shrinkage using Dual-Tree Complex Wavelet Transform
    Chitchian, Shahab
    Fiddy, Michael
    Fried, Nathaniel M.
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS V, 2009, 7161
  • [37] Novel approach to modeling spectral-domain optical coherence tomography with Monte Carlo method
    Kraszewski, Maciej
    Trojanowski, Michal
    Strakowski, Marcin
    Plucinski, Jerzy
    Kosmowski, Bogdan B.
    OPTICAL MODELLING AND DESIGN III, 2014, 9131
  • [38] Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography
    Yasuno, Y
    Sugisaka, JI
    Sando, Y
    Nakamura, Y
    Makita, S
    Itoh, M
    Yatagai, T
    OPTICS EXPRESS, 2006, 14 (03): : 1006 - 1020
  • [39] Enhancement of Fourier domain optical coherence tomography images using discrete Fourier transform method
    Chow, T. H.
    Razul, S. Gulam
    Ng, B. K.
    Ho, Gideon
    Yeo, C. B. A.
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE XII, 2008, 6847
  • [40] Cross-domain retinopathy classification with optical coherence tomography images via a novel deep domain adaptation method
    Luo, Yuemei
    Xu, Qing
    Hou, Yubo
    Liu, Linbo
    Wu, Min
    JOURNAL OF BIOPHOTONICS, 2021, 14 (08)