Analyticity of Nekrasov Partition Functions

被引:17
|
作者
Felder, Giovanni [1 ]
Mueller-Lennert, Martin [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
BLOWUP;
D O I
10.1007/s00220-018-3270-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the K-theoretic Nekrasov instanton partition functions have a positive radius of convergence in the instanton counting parameter and are holomorphic functions of the Coulomb parameters in a suitable domain. We discuss the implications for the AGT correspondence and the analyticity of the norm of Gaiotto states for the deformed Virasoro algebra. The proof is based on random matrix techniques and relies on an integral representation of the partition function, due to Moore, Nekrasov, and Shatashvili, which we also prove.
引用
收藏
页码:683 / 718
页数:36
相关论文
共 50 条