CLUSTER TODA CHAINS AND NEKRASOV FUNCTIONS

被引:20
|
作者
Bershtein, M. A. [1 ,2 ,3 ,4 ,5 ]
Gavrylenko, P. G. [1 ,2 ,6 ]
Marshakov, A. V. [1 ,2 ,7 ,8 ]
机构
[1] RAS, Landau Inst Theoret Phys, Chernogolovka, Moscow Oblast, Russia
[2] Natl Res Univ Higher Sch Econ, Lab Representat Theory & Math Phys, Fac Math, Moscow, Russia
[3] Skoltech, Ctr Adv Studies, Moscow, Russia
[4] Independent Univ Moscow, Moscow, Russia
[5] RAS, Inst Informat Transmiss Problems, Moscow, Russia
[6] Bogolyubov Inst Theoret Phys, Kiev, Ukraine
[7] Inst Theoret & Expt Phys, Moscow, Russia
[8] RAS, Theory Dept, Lebedev Phys Inst, Moscow, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
integrable system; topological string; cluster algebra; supersymmetric gauge theory;
D O I
10.1134/S0040577919020016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the relation between cluster integrable systems and q-difference equations beyond the Painlev ' e case. We consider the class of hyperelliptic curves where the Newton polygons contain only four boundary points. We present the corresponding cluster integrable Toda systems and identify their discrete automorphisms with certain reductions of the Hirota difference equation. We also construct nonautonomous versions of these equations and find that their solutions are expressed in terms of five-dimensional Nekrasov functions with Chern-Simons contributions, while these equations in the autonomous case are solved in terms of Riemann theta functions.
引用
收藏
页码:157 / 188
页数:32
相关论文
共 50 条
  • [1] Cluster Toda Chains and Nekrasov Functions
    M. A. Bershtein
    P. G. Gavrylenko
    A. V. Marshakov
    Theoretical and Mathematical Physics, 2019, 198 : 157 - 188
  • [2] On the Convergence of Nekrasov Functions
    Paolo Arnaudo
    Giulio Bonelli
    Alessandro Tanzini
    Annales Henri Poincaré, 2024, 25 : 2389 - 2425
  • [3] On the Convergence of Nekrasov Functions
    Arnaudo, Paolo
    Bonelli, Giulio
    Tanzini, Alessandro
    ANNALES HENRI POINCARE, 2024, 25 (04): : 2389 - 2425
  • [4] The power of Nekrasov functions
    Mironov, A.
    Morozov, A.
    PHYSICS LETTERS B, 2009, 680 (02) : 188 - 194
  • [5] Geometric constructions of Toda and periodic Toda chains
    Guo, MZ
    Liu, XF
    Qian, M
    Wan, BL
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 28 (03) : 289 - 294
  • [6] On a class of toda chains
    V. E. Adler
    A. B. Shabat
    Theoretical and Mathematical Physics, 1997, 111 : 647 - 657
  • [7] On a class of Toda chains
    Adler, VE
    Shabat, AB
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 111 (03) : 647 - 657
  • [8] Gluing Nekrasov Partition Functions
    Qiu, Jian
    Tizzano, Luigi
    Winding, Jacob
    Zabzine, Maxim
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (02) : 785 - 816
  • [9] Analyticity of Nekrasov Partition Functions
    Giovanni Felder
    Martin Müller-Lennert
    Communications in Mathematical Physics, 2018, 364 : 683 - 718
  • [10] Analyticity of Nekrasov Partition Functions
    Felder, Giovanni
    Mueller-Lennert, Martin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 364 (02) : 683 - 718