Learning Object Categories From Internet Image Searches

被引:50
|
作者
Fergus, Rob [1 ]
Fei-Fei, Li [2 ]
Perona, Pietro [3 ]
Zisserman, Andrew [4 ]
机构
[1] Courant Inst, Dept Comp Sci, New York, NY 10003 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[4] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Internet image search engines; learning; object categories; recognition; unsupervised; SCALE;
D O I
10.1109/JPROC.2010.2048990
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we describe a simple approach to learning models of visual object categories from images gathered from Internet image search engines. The images for a given keyword are typically highly variable, with a large fraction being unrelated to the query term, and thus pose a challenging environment from which to learn. By training our models directly from Internet images, we remove the need to laboriously compile training data sets, required by most other recognition approaches-this opens up the possibility of learning object category models "on-the-fly.'' We describe two simple approaches, derived from the probabilistic latent semantic analysis (pLSA) technique for text document analysis, that can be used to automatically learn object models from these data. We show two applications of the learned model: first, to rerank the images returned by the search engine, thus improving the quality of the search engine; and second, to recognize objects in other image data sets.
引用
收藏
页码:1453 / 1466
页数:14
相关论文
共 50 条
  • [1] Learning object categories from Google's image search
    Fergus, R
    Fei-Fei, L
    Perona, P
    Zisserman, A
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1816 - 1823
  • [2] Learning to recognize novel object categories from examples
    Ullman, S.
    PERCEPTION, 2007, 36 : 65 - 66
  • [3] Automatic Image Attribute Selection for Zero-shot Learning of Object Categories
    Liu, Liangchen
    Wiliem, Arnold
    Chen, Shaokang
    Lovell, Brian C.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2619 - 2624
  • [4] Learning to Imitate Object Interactions from Internet Videos
    Patel, Austin
    Wang, Andrew
    Radosavovic, Ilija
    Malik, Jitendra
    arXiv, 2022,
  • [5] Object and image retrieval over the internet
    Gilles, S
    Winter, A
    Feldmar, J
    Poirier, N
    Bousquet, R
    Bussy, B
    Lamure, H
    Demarty, CH
    Nastar, C
    INTERNET IMAGING II, 2001, 4311 : 35 - 43
  • [6] Pruning training sets for learning of object categories
    Angelova, A
    Abu-Mostafa, Y
    Perona, P
    2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 494 - 501
  • [7] One-shot learning of object categories
    Li, FF
    Fergus, R
    Perona, P
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (04) : 594 - 611
  • [8] An Efficient Astronomical Image Representation for Solar System Object Searches
    Clark, David L.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2014, 126 (935) : 70 - 78
  • [9] Unsupervised Learning of 3D Object Categories from Videos in the Wild
    Henzler, Philipp
    Reizenstein, Jeremy
    Labatut, Patrick
    Shapovalov, Roman
    Ritschel, Tobias
    Vedaldi, Andrea
    Novotny, David
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4698 - 4707
  • [10] Feature Learning from Image Markers for Object Delineation
    de Souza, Italos Estilon
    Benato, Barbara C.
    Falcao, Alexandre Xavier
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 116 - 123