On recognizing Cartesian graph bundles

被引:9
|
作者
Zmazek, B
Zerovnik, J
机构
[1] Univ Maribor, Maribor 2000, Slovenia
[2] Inst Math Phys & Mech, Dept Theoret Comp Sci, Ljubljana 1111, Slovenia
关键词
graph bundles; Cartesian graph bundles;
D O I
10.1016/S0012-365X(00)00254-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Graph bundles generalize the notion of covering graphs and graph products. In Imrich et al. (Discrete Math. 167/168 (1988) 393-403,) an algorithm that finds a presentation as a nontrivial Cartesian graph bundle for all graphs that are Cartesian graph bundles over triangle-free simple base was given. In this paper we extend this algorithm to recognize Cartesian graph bundles over a K-4\e-free simple base, without induced K-3,K-3. Finally, we conjecture the existence of algorithm for recognition of Cartesian graph bundle over a K-4/e-free simple base. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:381 / 391
页数:11
相关论文
共 50 条
  • [41] Bipartite graph bundles with connected fibres
    Hong, SP
    Kwak, JH
    Lee, J
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) : 153 - 161
  • [42] Generalized characteristic polynomials of graph bundles
    Kim, Dongseok
    Kim, Hye Kyung
    Lee, Jaeun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (04) : 688 - 697
  • [43] Graph bundles and Ricci-flatness
    Li, Wenbo
    Liu, Shiping
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (02) : 523 - 535
  • [44] A CLOSED GRAPH THEOREM FOR BANACH BUNDLES
    BAKER, CW
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1982, 12 (03) : 537 - 543
  • [45] EDGE-COLORABILITY OF GRAPH BUNDLES
    PISANSKI, T
    SHAWETAYLOR, J
    VRABEC, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (01) : 12 - 19
  • [46] ISOMORPHISM-CLASSES OF GRAPH BUNDLES
    KWAK, JH
    LEE, JE
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (04): : 747 - 761
  • [47] Weighted complexities of graph products and bundles
    Kwak, Jin Ho
    Park, Yong Sung
    Sato, Iwao
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (01) : 228 - 245
  • [48] Zeta functions of infinite graph bundles
    Cooper, Samuel
    Prassidis, Stratos
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (02): : 185 - 201
  • [49] THE NON-ISOLATED RESOLVING NUMBER OF A GRAPH CARTESIAN PRODUCT WITH A COMPLETE GRAPH
    Hasibuan, I. M.
    Salman, A. N. M.
    Saputro, S. W.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2022, 91 (03): : 191 - 204
  • [50] The crossing number of Cartesian product of sunlet graph with path and complete bipartite graph
    Alhajjar, Mhaid
    Panda, Amaresh Chandra
    Behera, Siva Prasad
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (01)