On recognizing Cartesian graph bundles

被引:9
|
作者
Zmazek, B
Zerovnik, J
机构
[1] Univ Maribor, Maribor 2000, Slovenia
[2] Inst Math Phys & Mech, Dept Theoret Comp Sci, Ljubljana 1111, Slovenia
关键词
graph bundles; Cartesian graph bundles;
D O I
10.1016/S0012-365X(00)00254-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Graph bundles generalize the notion of covering graphs and graph products. In Imrich et al. (Discrete Math. 167/168 (1988) 393-403,) an algorithm that finds a presentation as a nontrivial Cartesian graph bundle for all graphs that are Cartesian graph bundles over triangle-free simple base was given. In this paper we extend this algorithm to recognize Cartesian graph bundles over a K-4\e-free simple base, without induced K-3,K-3. Finally, we conjecture the existence of algorithm for recognition of Cartesian graph bundle over a K-4/e-free simple base. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:381 / 391
页数:11
相关论文
共 50 条
  • [21] RECOGNIZING A MEDIATE GRAPH TO BE HAMILTONIAN
    SUN, HQ
    ACTA MATHEMATICA SCIENTIA, 1988, 8 (01) : 25 - 27
  • [22] Recognizing Graph Search Trees
    Beisegel, Jesse
    Denkert, Carolin
    Koehler, Ekkehard
    Krnc, Matjaz
    Pivac, Nevena
    Scheffler, Robert
    Strehler, Martin
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 99 - 110
  • [23] Eccentric graph of trees and their Cartesian products
    Arora, Anita
    Mishra, Rajiv
    arXiv, 2023,
  • [24] On the metric dimension of Cartesian powers of a graph
    Jiang, Zilin
    Polyanskii, Nikita
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 165 : 1 - 14
  • [25] On Omega Polynomial of Cartesian Product Graph
    Ghorbani, M.
    Hosseinzadeh, M. A.
    Diudea, M. V.
    UTILITAS MATHEMATICA, 2011, 84 : 165 - 172
  • [26] On domination numbers of graph bundles
    Zmazek B.
    Žerovnik J.
    J. Appl. Math. Comp., 2006, 1-2 (39-48): : 39 - 48
  • [27] Zeta functions of graph bundles
    Feng, Rongquan
    Kwak, Jin Ho
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 43 (06) : 1269 - 1287
  • [28] Isoperimetric numbers of graph bundles
    Kwak, JH
    Lee, J
    Sohn, MY
    GRAPHS AND COMBINATORICS, 1996, 12 (03) : 239 - 251
  • [29] THE MAXIMUM GENUS OF GRAPH BUNDLES
    MOHAR, B
    PISANSKI, T
    SKOVIERA, M
    EUROPEAN JOURNAL OF COMBINATORICS, 1988, 9 (03) : 215 - 224
  • [30] Eccentric graph of trees and their Cartesian products
    Arora, Anita
    Mishra, Rajiv
    DISCRETE MATHEMATICS, 2024, 347 (09)