Smoluchowski equation with a sink term: Analytical solutions for the rate constant and their numerical test

被引:30
|
作者
Berezhkovskii, AM
D'yakov, YA
Zitserman, VY
机构
[1] LY Karpov Phys Chem Res Inst, Moscow 103064, Russia
[2] Russian Acad Sci, Inst High Temp, Moscow 127412, Russia
来源
JOURNAL OF CHEMICAL PHYSICS | 1998年 / 109卷 / 11期
关键词
D O I
10.1063/1.477024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Smoluchowski equation with a sink term is widely used as a model of a rate process in a slowly relaxing environment. Two approximate solutions for the rate constant obtained for a steeply growing sink are tested numerically using an exponential sink. Both analytical solutions are in a good agreement with the numerical results over a wide range of the problem parameters (environment relaxation rate). They show how the rate constant Gamma decreases when the viscosity eta of the environment increases. If the dependence is approximated by the fractional power law, Gamma proportional to eta(-alpha), the exponent alpha is always less than unity and depends on eta. It tends to zero for fast relaxation of the environment (small eta) and increases when the relaxation slows down (eta grows). (C) 1998 American Institute of Physics.
引用
收藏
页码:4182 / 4189
页数:8
相关论文
共 50 条
  • [31] APPROXIMATE ANALYTICAL AND NUMERICAL-SOLUTIONS OF THE STATIONARY OSTROVSKY EQUATION
    GILMAN, OA
    GRIMSHAW, R
    STEPANYANTS, YA
    STUDIES IN APPLIED MATHEMATICS, 1995, 95 (01) : 115 - 126
  • [32] On the analytical and numerical solutions of the Benjamin-Bona-Mahony equation
    Yokus, Asif
    Sulaiman, Tukur Abdulkadir
    Bulut, Hasan
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (01)
  • [33] Analytical and numerical solutions of the density dependent diffusion Nagumo equation
    Van Gorder, Robert A.
    Vajravelu, K.
    PHYSICS LETTERS A, 2008, 372 (31) : 5152 - 5158
  • [34] Blow up, exponential decay of solutions for a G-heat equation with source term: Analytical and numerical results
    Ouaoua, Amar
    Boughamsa, Wissem
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [35] Lie symmetry analysis, conservation laws and analytical solutions for the constant astigmatism equation
    Tian, Shou-Fu
    Zou, Li
    Zhang, Tian-Tian
    CHINESE JOURNAL OF PHYSICS, 2017, 55 (05) : 1938 - 1952
  • [36] Numerical and analytical solutions of dispersion equation in lossy nonlinear waveguiding system
    Shabat, MM
    Jäger, D
    Abd-El naby, MA
    Barakat, NM
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1999, 22 (04) : 273 - 278
  • [37] Analytical and numerical solutions of the generalized dispersive Swift-Hohenberg equation
    Kudryashov, Nikolay A.
    Ryabov, Pavel N.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 286 : 171 - 177
  • [38] Accuracy of analytical-numerical solutions of the Michaelis-Menten equation
    Gonzalez-Parra, Gilberto
    Acedo, Luis
    Arenas, Abraham
    COMPUTATIONAL & APPLIED MATHEMATICS, 2011, 30 (02): : 445 - 461
  • [39] Analytical and Numerical Solutions of Fractional Type Advection-diffusion Equation
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [40] On the Analytical and Numerical Solutions of the One-Dimensional Nonlinear Schrodinger Equation
    Farag, Neveen G. A.
    Eltanboly, Ahmed H.
    EL-Azab, M. S.
    Obayya, S. S. A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021