Smoluchowski equation with a sink term: Analytical solutions for the rate constant and their numerical test

被引:30
|
作者
Berezhkovskii, AM
D'yakov, YA
Zitserman, VY
机构
[1] LY Karpov Phys Chem Res Inst, Moscow 103064, Russia
[2] Russian Acad Sci, Inst High Temp, Moscow 127412, Russia
来源
JOURNAL OF CHEMICAL PHYSICS | 1998年 / 109卷 / 11期
关键词
D O I
10.1063/1.477024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Smoluchowski equation with a sink term is widely used as a model of a rate process in a slowly relaxing environment. Two approximate solutions for the rate constant obtained for a steeply growing sink are tested numerically using an exponential sink. Both analytical solutions are in a good agreement with the numerical results over a wide range of the problem parameters (environment relaxation rate). They show how the rate constant Gamma decreases when the viscosity eta of the environment increases. If the dependence is approximated by the fractional power law, Gamma proportional to eta(-alpha), the exponent alpha is always less than unity and depends on eta. It tends to zero for fast relaxation of the environment (small eta) and increases when the relaxation slows down (eta grows). (C) 1998 American Institute of Physics.
引用
收藏
页码:4182 / 4189
页数:8
相关论文
共 50 条
  • [21] Finite element solution of the time-dependent smoluchowski equation for continuum diffusion rate constant calculations
    Cheng, Yuhui
    Suen, Jason
    Bond, Steve
    Holst, Michael
    McCammon, James Andrew
    BIOPHYSICAL JOURNAL, 2007, : 153A - 153A
  • [22] Analytical solutions for constant-rate test in bounded confined aquifers with non-Darcian effect
    Zong, Yi-jie
    Chen, Li-hua
    Liu, Jian-jun
    Liu, Yue-hui
    Xu, Yong-xin
    Gan, Fu -wan
    Xiao, Liang
    JOURNAL OF GROUNDWATER SCIENCE AND ENGINEERING, 2022, 10 (04): : 311 - 321
  • [24] Analytical, semi-analytical, and numerical solutions for the Cahn-Allen equation
    Khater, Mostafa M. A.
    Park, Choonkil
    Lu, Dianchen
    Attia, Raghda A. M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [25] ANALYTICAL AND NUMERICAL-SOLUTIONS OF THE TIME-DEPENDENT DEBYE-SMOLUCHOWSKI EQUATION FOR TRANSPORT-INFLUENCED REACTIONS - ION-ION RECOMBINATION
    FLANNERY, MR
    MANSKY, EJ
    CHEMICAL PHYSICS, 1989, 132 (1-2) : 115 - 136
  • [26] Numerical and analytical solutions of new generalized fractional diffusion equation
    Xu, Yufeng
    He, Zhimin
    Agrawal, Om P.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (10) : 2019 - 2029
  • [27] Numerical and Analytical Solutions of the Aerosol Dynamic Equation in Reactor Containment
    Shaker, M. O.
    Aziz, M.
    Ali, R.
    Sirwah, M.
    Slama, M.
    ARAB JOURNAL OF NUCLEAR SCIENCES AND APPLICATIONS, 2012, 45 (04): : 96 - +
  • [28] Numerical and analytical solutions of new Blasius equation for turbulent flow
    Rahman, M. Mizanur
    Khan, Shahansha
    Akbar, M. Ali
    HELIYON, 2023, 9 (03)
  • [29] Comparison of Approximate Analytical and Numerical Solutions of the Allen Cahn Equation
    Hussain, Safdar
    Haq, Fazal
    Shah, Abdullah
    Abduvalieva, Dilsora
    Shokri, Ali
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024
  • [30] Analytical and numerical solutions of the density dependent Nagumo telegraph equation
    Van Gorder, Robert A.
    Vajravelu, K.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3923 - 3929