Efficient CNN Architecture for Multi-modal Aerial View Object Classification

被引:2
|
作者
Miron, Casian [1 ]
Pasarica, Alexandru [1 ]
Timofte, Radu [1 ]
机构
[1] Gheorghe Asachi Tech Univ, MCC Resources SRL, Iasi, Romania
关键词
D O I
10.1109/CVPRW53098.2021.00068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The NTIRE 2021 workshop features a Multi-modal Aerial View Object Classification Challenge. Its focus is on multi-sensor imagery classification in order to improve the performance of automatic target recognition (ATR) systems. In this paper we describe our entry in this challenge, a method focused on efficiency and low computational time, while maintaining a high level of accuracy. The method is a convolutional neural network with 11 convolutions, 1 max pooling layers and 3 residual blocks which has a total of 373.130 parameters. The method ranks 3rd in the Track 2 (SAR+EO) of the challenge.
引用
收藏
页码:560 / 565
页数:6
相关论文
共 50 条
  • [21] MULTI-MODAL CLASSIFICATION OF POLYP MALIGNANCY USING CNN FEATURES WITH BALANCED CLASS AUGMENTATION
    Fonolla, Roger
    van der Sommen, Fans
    Schreuder, Ramon M.
    Schoon, Erik J.
    de With, Peter H. N.
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 74 - 78
  • [22] Virtual Multi-modal Object Detection and Classification with Deep Convolutional Neural Networks
    Mitsakos, Nikolaos
    Papadakis, Manos
    WAVELETS AND SPARSITY XVIII, 2019, 11138
  • [23] Multi-modal Variational Faster R-CNN for Improved Visual Object Detection in Manufacturing
    Mouzenidis, Panagiotis
    Louros, Antonios
    Konstantinidis, Dimitrios
    Dimitropoulos, Kosmas
    Daras, Petros
    Mastos, Theofilos
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2587 - 2594
  • [24] Multi-modal Multi-class Parkinson Disease Classification Using CNN and Decision Level Fusion
    Sahu, Sushanta Kumar
    Chowdhury, Ananda S.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 : 737 - 745
  • [25] MULTI-MODAL APPROACH TO INDEXING AND CLASSIFICATION
    SWIFT, DF
    WINN, VA
    BRAMER, DA
    INTERNATIONAL CLASSIFICATION, 1977, 4 (02): : 90 - 94
  • [26] Multi-modal Semantic Place Classification
    Pronobis, A.
    Mozos, O. Martinez
    Caputo, B.
    Jensfelt, P.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2010, 29 (2-3): : 298 - 320
  • [27] Multi-modal long document classification based on Hierarchical Prompt and Multi-modal Transformer
    Liu, Tengfei
    Hu, Yongli
    Gao, Junbin
    Wang, Jiapu
    Sun, Yanfeng
    Yin, Baocai
    NEURAL NETWORKS, 2024, 176
  • [28] PNAS-MOT: Multi-Modal Object Tracking With Pareto Neural Architecture Search
    Peng, Chensheng
    Zeng, Zhaoyu
    Gao, Jinling
    Zhou, Jundong
    Tomizuka, Masayoshi
    Wang, Xinbing
    Zhou, Chenghu
    Ye, Nanyang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 4377 - 4384
  • [29] A Multi-modal Approach for Enhancing Object Placement
    Srimal, P. H. D. Arjuna S.
    Jayasekara, A. G. Buddhika P.
    PROCEEDINGS OF THE 2017 6TH NATIONAL CONFERENCE ON TECHNOLOGY & MANAGEMENT (NCTM) - EXCEL IN RESEARCH AND BUILD THE NATION, 2017, : 17 - 22
  • [30] Multi-modal Queried Object Detection in the Wild
    Xu, Yifan
    Zhang, Mengdan
    Fu, Chaoyou
    Chen, Peixian
    Yang, Xiaoshan
    Li, Ke
    Xu, Changsheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,